Effects of soil water deficit at different growth stages on yield and quality of processing tomato

2016 ◽  
pp. 85-92
Author(s):  
A. Turhan ◽  
H. Kuscu ◽  
N. Ozmen ◽  
P. Aydinol ◽  
V. Seniz ◽  
...  
2006 ◽  
Vol 57 (2) ◽  
pp. 221 ◽  
Author(s):  
Qifu Ma ◽  
Sharon R. Niknam ◽  
David W. Turner

Canola (Brassica napus L.) is a major rotation crop but low yield has limited its adoption by farmers in the low-rainfall regions of southern Australia, where drought events can occur at any stage of crop development. We examined the effect of soil water deficit on osmotic adjustment and seed yield of canola and mustard (B. juncea L.) at the juvenile, elongation, anthesis, or seed-fill stage under glasshouse conditions and post-anthesis drought in the field. At the juvenile and elongation stages, leaves of both canola cv. Monty and mustard line 397-23-2-3-3 adjusted osmotically after exposure to water deficit. In comparison, only the mustard line expressed osmotic adjustment at anthesis and neither genotype adjusted at the seed-fill stage. A single drought event at the juvenile or elongation stage had little effect on growth and seed yield of either genotype, whereas water deficit at anthesis or seed-fill stage reduced seed yield of the canola cultivar by decreasing pod number, seeds per pod, and/or harvest index but largely did not affect the mustard line. In the field where rainfall diminished and plants were subjected to increasing water deficit during the reproductive stages, canola cv. Karoo and mustard line JN25 showed higher osmotic adjustment at anthesis and less yield reduction than the canola cv. Monty. This study suggests that yield sensitivity to water deficit was mainly due to its effect on concurrent formation of yield components, but could be modified by the physiological trait of osmotic adjustment.


2013 ◽  
Vol 405-408 ◽  
pp. 2273-2276
Author(s):  
Heng Jia Zhang ◽  
Jing Li

An experiment was conducted to determine the effect of mulched drip irrigation under water deficit on soil water content (SWC), stored soil water (SSW), daily water consumption (DWC) and ratio of water consumption in total water use (RWC) of potato in an arid area. Five water deficit treatments designed to subject potato to various levels of soil water deficit at different crop growth stages and a full irrigation control were established. The result indicated that the maximum SWC was at 20 cm depth in soil profile and that in 10 to 40 cm increment varied sharply during potato growing season. The SWC, SSW, DWC and RWC were significantly affected by mulched drip irrigation at water deficit regulation stages except at starch accumulation. Therefore, proper levels of soil water deficit regulated with mulched drip irrigation at proper plant growth stages could be used to regulate soil water status, stored soil water and crop water consumption effectively.


Author(s):  
Fernando H. B. Machado ◽  
Andréia M. S. de S. David ◽  
Silvânio R. dos Santos ◽  
Josiane C. Figueiredo ◽  
Cleisson D. da Silva ◽  
...  

ABSTRACT Crop strategies focused on the rational use of water are required in semiarid regions. Thus, the objective of this work was to evaluate the physiological quality of maize seeds produced under soil water deficit conditions. Five irrigation water depth were established, based on the field capacity (100, 85, 70, 55 and 40%), to control the available water for two maize hybrids (2B-587 and DKB-390). A randomized block design was used, with a split-plot arrangement and four repetitions. The plots consisted of irrigation water depths, and the subplots consisted of maize hybrids. The seed water concentration, germination, and vigor were determined after the harvest, using data from first germination counting, seedling emergence, germination speed index, seedling length, and accelerated aging, electrical conductivity, and modified cold tests. The maize hybrid DKB-390 showed better physiological potential under the soil water deficit conditions evaluated. The irrigation water depths lower than 70% of field capacity resulted in decreases in soil water contents and affected negatively the physiological quality of the maize seeds produced.


2022 ◽  
Vol 262 ◽  
pp. 107407
Author(s):  
Fei Chen ◽  
Ningbo Cui ◽  
Shouzheng Jiang ◽  
Hongping Li ◽  
Yaosheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document