Water - emulsion composition based on triethoxysilylpropylamide perfluoro-2,5-dimethyl-3,6-dioxanonoic acid (Fluorosam-39) and perfluorocarboxylic acid as emulsifier

Author(s):  
Stanislav Krukovsky ◽  
1998 ◽  
Author(s):  
S. Venkatesh ◽  
C. Watson ◽  
C. D. Wolbach ◽  
L. R. Waterland

2016 ◽  
Vol 9 (4) ◽  
pp. 625-632
Author(s):  
Alireza Nazari Alavi ◽  
Mohammad Mirzai ◽  
Ali Akbar Sajadi ◽  
Hamed Hasanian

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Vera Breiing ◽  
Jennifer Hillmer ◽  
Christina Schmidt ◽  
Michael Petry ◽  
Brigitte Behrends ◽  
...  

As biorationals, plant oils offer numerous advantages such as being natural products, with low ecotoxicological side effects, and high biodegradability. In particular, drying glyceride plant oils, which are rich in unsaturated fatty acids, might be promising candidates for a more sustainable approach in the discussion about plant protection and the environment. Based on this, we tested the protective and curative efficacy of an oil-in-water-emulsion preparation using drying plant oils (linseed oil, tung oil) and a semi-drying plant oil (rapeseed oil) separately and in different mixtures. Plant oils were tested in greenhouse experiments (in vivo) on green beans (Phaseolus vulgaris L.) against bean rust (Uromyces appendiculatus). We observed that a 2% oil concentration showed no or very low phytotoxic effects on green beans. Both tested drying oils showed a protective control ranging from 53–100% for linseed oil and 32–100% for tung oil. Longer time intervals of 6 days before inoculation (6dbi) were less effective than shorter intervals of 2dbi. Curative efficacies were lower with a maximum of 51% for both oils when applied 4 days past inoculation (4dpi) with the fungus. Furthermore, the results showed no systemic effects. These results underline the potential of drying plant oils as biorationals in sustainable plant protection strategies.


Sign in / Sign up

Export Citation Format

Share Document