scholarly journals BIOCHEMICAL RESPONSES OF TWO SUGARCANE VARIETIES TO WHITEFLY NEOMASKELLIA ANDROPOGONIS INFESTATION AND ITS CONTROL BY A NEW BUTENOLIDE INSECTICIDE, FLUPYRADIFURONE

2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Zahra SAEEDI ◽  
Masumeh ZIAEE
2019 ◽  
Vol 32 (4) ◽  
pp. 1069-1076
Author(s):  
WELSON LIMA SIMÕES ◽  
DANIELA SIQUEIRA COELHO ◽  
ALESSANDRO CARLOS MESQUITA ◽  
MARCELO CALGARO ◽  
JUCICLÉIA SOARES DA SILVA

ABSTRACT Salt stress is one of the most limiting environmental factors for agricultural yields in the Semiarid region of Brazil. Considering the expansion of areas with sugarcane crops in this region, the selection of more adapted plant varieties to this environment is an essential tool for the sustainability of this activity. Thus, the objective of the present work was to evaluate the physiological and biochemical responses of plants of ten sugarcane varieties to salt stress. The experiment was conducted in a greenhouse using a randomized block design, in a 6×10 factorial arrangement consisting of six salinity levels in the irrigation water (0, 1.0, 2.0, 4.0, 6.0, and 8.0 dS m-1) and ten sugarcane varieties (VAT 90212, RB 72454, RB 867515, Q 124, RB 961003, RB 957508, SP 791011, RB 835089, RB 92579, and SP 943206), with three replications. Salt waters were applied every two days to increase the soil moisture to field capacity and promote leaching. The gas exchange, chlorophyll content, and total soluble and reducing sugars of leaves were evaluated at 90 days after planting. The highest chlorophyll contents were found in plants of the varieties Q 124, RB 96103, RB 835089, and SP 943206. The effect of salinity on the sugarcane plants affected their leaf gas exchanges and total soluble and reducing sugar contents, denoting the adaptability of plants to the stress conditions evaluated. The decrease of stomatal conductance resulted in decreases in photosynthetic rates in plants of all sugarcane varieties evaluated, except for RB 867515.


2018 ◽  
Vol 19 (1&2) ◽  
pp. 217-222
Author(s):  
Manjunath J. Shetty ◽  
◽  
P.R. Geethalekshmi ◽  
C. Mini ◽  
Vijayaraghava Kumar ◽  
...  

2013 ◽  
Vol 39 (1) ◽  
pp. 141
Author(s):  
Jun LUO ◽  
Hua ZHANG ◽  
Zu-Hu DENG ◽  
Li-Ping XU ◽  
Liang-Nian XU ◽  
...  

2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Sugar Tech ◽  
2021 ◽  
Author(s):  
Elson De Jesus Antunes Júnior ◽  
José Alves Júnior ◽  
Adão Wagner Pego Evangelista ◽  
Derblai Casaroli ◽  
Rafael Battisti ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1349
Author(s):  
Ahlam Khalofah ◽  
Mona Kilany ◽  
Hussein Migdadi

Heavy metals are primarily generated and deposited in the environment, causing phytotoxicity. This work evaluated fenugreek plants’ morpho-physiological and biochemical responses under mercury stress conditions toward Ag nanoparticles and Sphingobacterium ginsenosidiumtans applications. The fabrication of Ag nanoparticles by Thymus vulgaris was monitored and described by UV/Vis analysis, FTIR, and SEM. The effect of mercury on vegetative growth was determined by measuring the root and shoots length, the number and area of leaves, the relative water content, and the weight of the green and dried plants; appraisal of photosynthetic pigments, proline, hydrogen peroxide, and total phenols content were also performed. In addition, the manipulation of Ag nanoparticles, S. ginsenosidiumtans, and their combination were tested for mercury stress. Here, Ag nanoparticles were formed at 420 nm with a uniform cuboid form and size of 85 nm. Interestingly, the gradual suppression of vegetal growth and photosynthetic pigments by mercury, Ag nanoparticles, and S. ginsenosidiumtans were detected; however, carotenoids and anthocyanins were significantly increased. In addition, proline, hydrogen peroxide, and total phenols content were significantly increased because mercury and S. ginsenosidiumtans enhance this increase. Ag nanoparticles achieve higher levels by the combination. Thus, S. ginsenosidiumtans and Ag nanoparticles could have the plausible ability to relieve and combat mercury’s dangerous effects in fenugreek.


Sign in / Sign up

Export Citation Format

Share Document