Design of a Wideband Linear Microphone Array for High-Quality Audio Recording

2018 ◽  
Vol 66 (3) ◽  
pp. 154-166
Author(s):  
Haoran Zhou ◽  
Jing Lu ◽  
Xiaojun Qiu
2008 ◽  
Vol 54 (2) ◽  
pp. 778-786 ◽  
Author(s):  
Yusuke Hioka ◽  
Manabu Okamoto ◽  
Kazunori Kobayashi ◽  
Yoichi Haneda ◽  
Akitoshi Kataoka

Author(s):  
Roy Rudolf Huizen ◽  
Florentina Tatrin Kurniati

This paper focuses on improving the accuracy of noise audio recordings. High-quality audio recording, extraction using the mel frequency cepstral coefficients (MFCC) method produces high accuracy. While the low-quality is because of noise, the accuracy is low. Improved accuracy by investigating the effect of bandwidth on the mel scale. The proposed improvement uses the mel scale separation methods into two frequency channels (MFCC dual-channel). For the comparison method using the mel scale bandwidth without separation (MFCC single-channel). Feature analysis using k-mean clustering. The data uses a noise variance of up to -16 dB. Testing on the MFCC single-channel method for -16 dB noise has an accuracy of 47.5%, while the MFCC dual-channel method has an accuracy better of 76.25%. The next test used adaptive noise-canceling (ANC) to reduce noise before extraction. The result is that the MFCC single-channel method has an accuracy of 82.5% and the MFCC dual-channel method has an accuracy better of 83.75%. High-quality audio recording testing for the MFCC single-channel method has an accuracy of 92.5% and the MFCC dual-channel method has an accuracy better of 97.5%. The test results show the effect of mel scale bandwidth to increase accuracy. The MFCC dual-channel method has higher accuracy.


2017 ◽  
Vol 29 (1) ◽  
pp. 198-212 ◽  
Author(s):  
Yoshiaki Bando ◽  
◽  
Hiroshi Saruwatari ◽  
Nobutaka Ono ◽  
Shoji Makino ◽  
...  

[abstFig src='/00290001/19.jpg' width='300' text='Human-voice enhancement system for a hose-shaped robot' ] This paper presents the design and implementation of a two-stage human-voice enhancement system for a hose-shaped rescue robot. When a microphone-equipped hose-shaped robot is used to search for a victim under a collapsed building, human-voice enhancement is crucial because the sound captured by a microphone array is contaminated by the ego-noise of the robot. For achieving both low latency and high quality, our system combines online and offline human-voice enhancement, providingan overview first and then details on demand. The online enhancement is used for searching for a victim in real time, while the offline one facilitates scrutiny by listening to highly enhanced human voices. Our online enhancement is based on an online robust principal component analysis, and our offline enhancement is based on an independent low-rank matrix analysis. The two enhancement methods are integrated with Robot Operating System (ROS). Experimental results showed that both the online and offline enhancement methods outperformed conventional methods.


1966 ◽  
Vol 24 ◽  
pp. 51-52
Author(s):  
E. K. Kharadze ◽  
R. A. Bartaya

The unique 70-cm meniscus-type telescope of the Abastumani Astrophysical Observatory supplied with two objective prisms and the seeing conditions characteristic at Mount Kanobili (Abastumani) permit us to obtain stellar spectra of a high quality. No additional design to improve the “climate” immediately around the telescope itself is being applied. The dispersions and photographic magnitude limits are 160 and 660Å/mm, and 12–13, respectively. The short-wave end of spectra reaches 3500–3400Å.


Author(s):  
R. L. Lyles ◽  
S. J. Rothman ◽  
W. Jäger

Standard techniques of electropolishing silver and silver alloys for electron microscopy in most instances have relied on various CN recipes. These methods have been characteristically unsatisfactory due to difficulties in obtaining large electron transparent areas, reproducible results, adequate solution lifetimes, and contamination free sample surfaces. In addition, there are the inherent health hazards associated with the use of CN solutions. Various attempts to develop noncyanic methods of electropolishing specimens for electron microscopy have not been successful in that the specimen quality problems encountered with the CN solutions have also existed in the previously proposed non-cyanic methods.The technique we describe allows us to jet polish high quality silver and silver alloy microscope specimens with consistant reproducibility and without the use of CN salts.The solution is similar to that suggested by Myschoyaev et al. It consists, in order of mixing, 115ml glacial actic acid (CH3CO2H, specific wt 1.04 g/ml), 43ml sulphuric acid (H2SO4, specific wt. g/ml), 350 ml anhydrous methyl alcohol, and 77 g thiourea (NH2CSNH2).


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


Author(s):  
L. Mulestagno ◽  
J.C. Holzer ◽  
P. Fraundorf

Due to the wealth of information, both analytical and structural that can be obtained from it TEM always has been a favorite tool for the analysis of process-induced defects in semiconductor wafers. The only major disadvantage has always been, that the volume under study in the TEM is relatively small, making it difficult to locate low density defects, and sample preparation is a somewhat lengthy procedure. This problem has been somewhat alleviated by the availability of efficient low angle milling.Using a PIPS® variable angle ion -mill, manufactured by Gatan, we have been consistently obtaining planar specimens with a high quality thin area in excess of 5 × 104 μm2 in about half an hour (milling time), which has made it possible to locate defects at lower densities, or, for defects of relatively high density, obtain information which is statistically more significant (table 1).


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Author(s):  
Judith M. Brock ◽  
Max T. Otten ◽  
Marc. J.C. de Jong

A Field Emission Gun (FEG) on a TEM/STEM instrument provides a major improvement in performance relative to one equipped with a LaB6 emitter. The improvement is particularly notable for small-probe techniques: EDX and EELS microanalysis, convergent beam diffraction and scanning. The high brightness of the FEG (108 to 109 A/cm2srad), compared with that of LaB6 (∼106), makes it possible to achieve high probe currents (∼1 nA) in probes of about 1 nm, whilst the currents for similar probes with LaB6 are about 100 to 500x lower. Accordingly the small, high-intensity FEG probes make it possible, e.g., to analyse precipitates and monolayer amounts of segregation on grain boundaries in metals or ceramics (Fig. 1); obtain high-quality convergent beam patterns from heavily dislocated materials; reliably detect 1 nm immuno-gold labels in biological specimens; and perform EDX mapping at nm-scale resolution even in difficult specimens like biological tissue.The high brightness and small energy spread of the FEG also bring an advantage in high-resolution imaging by significantly improving both spatial and temporal coherence.


Sign in / Sign up

Export Citation Format

Share Document