scholarly journals FRAME SAMPLING ASSISTED DEPTH MOTION MAPS FOR DEPTH BASED HUMAN ACTION RECOGNITION

2021 ◽  
Vol 9 (1) ◽  
pp. 240-246
Author(s):  
Sivanagi Reddy Kalli, K. Mohanram, S. Jagadeesh

The discovery of depth sensors has brought new opportunities in the Human Action Research by providing depth image data. Compared to the conventional RGB image data, the depth image data has additional benefits like color, illumination invariant, and provides clues about the shape of body. Inspired with these benefits, we present a new Human Action Recognition model from depth images. For a given action video, the consideration of an entire frames constitutes less detailed information about the shape and movements of body. Hence we have proposed a new method called Frame Sampling to reduce the frame count and chooses only key frames. After key frames extraction, they are processed through Depth Motion Map for action representation followed by Support Vector Machine for classification. The developed model is evaluated on a standard public dataset captured by depth cameras. The experimental results demonstrate the superior performance compared with state-of-art methods

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Shirui Huo ◽  
Tianrui Hu ◽  
Ce Li

Human action recognition is an important recent challenging task. Projecting depth images onto three depth motion maps (DMMs) and extracting deep convolutional neural network (DCNN) features are discriminant descriptor features to characterize the spatiotemporal information of a specific action from a sequence of depth images. In this paper, a unified improved collaborative representation framework is proposed in which the probability that a test sample belongs to the collaborative subspace of all classes can be well defined and calculated. The improved collaborative representation classifier (ICRC) based on l2-regularized for human action recognition is presented to maximize the likelihood that a test sample belongs to each class, then theoretical investigation into ICRC shows that it obtains a final classification by computing the likelihood for each class. Coupled with the DMMs and DCNN features, experiments on depth image-based action recognition, including MSRAction3D and MSRGesture3D datasets, demonstrate that the proposed approach successfully using a distance-based representation classifier achieves superior performance over the state-of-the-art methods, including SRC, CRC, and SVM.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoqiang Li ◽  
Yi Zhang ◽  
Dong Liao

Human action recognition based on 3D skeleton has become an active research field in recent years with the recently developed commodity depth sensors. Most published methods analyze an entire 3D depth data, construct mid-level part representations, or use trajectory descriptor of spatial-temporal interest point for recognizing human activities. Unlike previous work, a novel and simple action representation is proposed in this paper which models the action as a sequence of inconsecutive and discriminative skeleton poses, named as key skeleton poses. The pairwise relative positions of skeleton joints are used as feature of the skeleton poses which are mined with the aid of the latent support vector machine (latent SVM). The advantage of our method is resisting against intraclass variation such as noise and large nonlinear temporal deformation of human action. We evaluate the proposed approach on three benchmark action datasets captured by Kinect devices: MSR Action 3D dataset, UTKinect Action dataset, and Florence 3D Action dataset. The detailed experimental results demonstrate that the proposed approach achieves superior performance to the state-of-the-art skeleton-based action recognition methods.


Author(s):  
Xueping Liu ◽  
Xingzuo Yue

The kernel function has been successfully utilized in the extreme learning machine (ELM) that provides a stabilized and generalized performance and greatly reduces the computational complexity. However, the selection and optimization of the parameters constituting the most common kernel functions are tedious and time-consuming. In this study, a set of new Hermit kernel functions derived from the generalized Hermit polynomials has been proposed. The significant contributions of the proposed kernel include only one parameter selected from a small set of natural numbers; thus, the parameter optimization is greatly facilitated and excessive structural information of the sample data is retained. Consequently, the new kernel functions can be used as optimal alternatives to other common kernel functions for ELM at a rapid learning speed. The experimental results showed that the proposed kernel ELM method tends to have similar or better robustness and generalized performance at a faster learning speed than the other common kernel ELM and support vector machine methods. Consequently, when applied to human action recognition by depth video sequence, the method also achieves excellent performance, demonstrating its time-based advantage on the video image data.


Author(s):  
ALI SEYDI KEÇELI ◽  
AHMET BURAK CAN

Human action recognition using depth sensors is an emerging technology especially in game console industry. Depth information can provide robust features about 3D environments and increase accuracy of action recognition in short ranges. This paper presents an approach to recognize basic human actions using depth information obtained from the Kinect sensor. To recognize actions, features extracted from angle and displacement information of joints are used. Actions are classified using support vector machines and random forest (RF) algorithm. The model is tested on HUN-3D, MSRC-12, and MSR Action 3D datasets with various testing approaches and obtained promising results especially with the RF algorithm. The proposed approach produces robust results independent from the dataset with simple and computationally cheap features.


Author(s):  
L. Nirmala Devi ◽  
A.Nageswar Rao

Human action recognition (HAR) is one of most significant research topics, and it has attracted the concentration of many researchers. Automatic HAR system is applied in several fields like visual surveillance, data retrieval, healthcare, etc. Based on this inspiration, in this chapter, the authors propose a new HAR model that considers an image as input and analyses and exposes the action present in it. Under the analysis phase, they implement two different feature extraction methods with the help of rotation invariant Gabor filter and edge adaptive wavelet filter. For every action image, a new vector called as composite feature vector is formulated and then subjected to dimensionality reduction through principal component analysis (PCA). Finally, the authors employ the most popular supervised machine learning algorithm (i.e., support vector machine [SVM]) for classification. Simulation is done over two standard datasets; they are KTH and Weizmann, and the performance is measured through an accuracy metric.


Author(s):  
Mohammad Farhad Bulbul ◽  
Yunsheng Jiang ◽  
Jinwen Ma

The emerging cost-effective depth sensors have facilitated the action recognition task significantly. In this paper, the authors address the action recognition problem using depth video sequences combining three discriminative features. More specifically, the authors generate three Depth Motion Maps (DMMs) over the entire video sequence corresponding to the front, side, and top projection views. Contourlet-based Histogram of Oriented Gradients (CT-HOG), Local Binary Patterns (LBP), and Edge Oriented Histograms (EOH) are then computed from the DMMs. To merge these features, the authors consider decision-level fusion, where a soft decision-fusion rule, Logarithmic Opinion Pool (LOGP), is used to combine the classification outcomes from multiple classifiers each with an individual set of features. Experimental results on two datasets reveal that the fusion scheme achieves superior action recognition performance over the situations when using each feature individually.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chao Tang ◽  
Huosheng Hu ◽  
Wenjian Wang ◽  
Wei Li ◽  
Hua Peng ◽  
...  

The representation and selection of action features directly affect the recognition effect of human action recognition methods. Single feature is often affected by human appearance, environment, camera settings, and other factors. Aiming at the problem that the existing multimodal feature fusion methods cannot effectively measure the contribution of different features, this paper proposed a human action recognition method based on RGB-D image features, which makes full use of the multimodal information provided by RGB-D sensors to extract effective human action features. In this paper, three kinds of human action features with different modal information are proposed: RGB-HOG feature based on RGB image information, which has good geometric scale invariance; D-STIP feature based on depth image, which maintains the dynamic characteristics of human motion and has local invariance; and S-JRPF feature-based skeleton information, which has good ability to describe motion space structure. At the same time, multiple K-nearest neighbor classifiers with better generalization ability are used to integrate decision-making classification. The experimental results show that the algorithm achieves ideal recognition results on the public G3D and CAD60 datasets.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1599 ◽  
Author(s):  
Md Uddin ◽  
Young-Koo Lee

Human action recognition plays a significant part in the research community due to its emerging applications. A variety of approaches have been proposed to resolve this problem, however, several issues still need to be addressed. In action recognition, effectively extracting and aggregating the spatial-temporal information plays a vital role to describe a video. In this research, we propose a novel approach to recognize human actions by considering both deep spatial features and handcrafted spatiotemporal features. Firstly, we extract the deep spatial features by employing a state-of-the-art deep convolutional network, namely Inception-Resnet-v2. Secondly, we introduce a novel handcrafted feature descriptor, namely Weber’s law based Volume Local Gradient Ternary Pattern (WVLGTP), which brings out the spatiotemporal features. It also considers the shape information by using gradient operation. Furthermore, Weber’s law based threshold value and the ternary pattern based on an adaptive local threshold is presented to effectively handle the noisy center pixel value. Besides, a multi-resolution approach for WVLGTP based on an averaging scheme is also presented. Afterward, both these extracted features are concatenated and feed to the Support Vector Machine to perform the classification. Lastly, the extensive experimental analysis shows that our proposed method outperforms state-of-the-art approaches in terms of accuracy.


Sign in / Sign up

Export Citation Format

Share Document