scholarly journals NORDHAUS – GADDUM TYPE RESULTS FOR WIENER LIKE INDICES OF GRAPHS

2021 ◽  
Vol 58 (2) ◽  
pp. 5843-5854
Author(s):  
R. BHUVANESHWARI, V. KALADEVI

A Nordhaus - Gaddum type result is a lower or upper bound on sum or product of a parameter of a graph and its complement. This concept was introduced in 1956 by Nordhaus E. A.,             Gaddum J. W. Generalized Wiener like indices such as wiener index, Detour index, Reciprocal- wiener index, Harary- wiener index, Hyper- wiener index, Reciprocal- Detour index, Harary- Detour index and Hyper- Detour index have been studied in graph theory. In this paper, Nordhaus – Gaddum type results of these indices for k-Sun graph and four regular graph are presented.

2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Peter Dankelmann ◽  
Alex Alochukwu

Let $G$ be a connected graph of order $n$.The Wiener index $W(G)$ of $G$ is the sum of the distances between all unordered pairs of vertices of $G$. In this paper we show that the well-known upper bound $\big( \frac{n}{\delta+1}+2\big) {n \choose 2}$ on the Wiener index of a graph of order $n$ and minimum degree $\delta$ [M. Kouider, P. Winkler, Mean distance and minimum degree. J. Graph Theory 25 no. 1 (1997)] can be improved significantly if the graph contains also a vertex of large degree. Specifically, we give the asymptotically sharp bound $W(G) \leq {n-\Delta+\delta \choose 2} \frac{n+2\Delta}{\delta+1}+ 2n(n-1)$ on the Wiener index of a graph $G$ of order $n$, minimum degree $\delta$ and maximum degree $\Delta$. We prove a similar result for triangle-free graphs, and we determine a bound on the Wiener index of $C_4$-free graphs of given order, minimum and maximum degree and show that it is, in some sense, best possible.


2011 ◽  
Vol Vol. 13 no. 3 (Graph Theory) ◽  
Author(s):  
Michael Henning ◽  
Ernst Joubert ◽  
Justin Southey

Graph Theory International audience A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper we study Nordhaus-Gaddum-type results for total domination. We examine the sum and product of γt(G1) and γt(G2) where G1 ⊕G2 = K(s,s), and γt is the total domination number. We show that the maximum value of the sum of the total domination numbers of G1 and G2 is 2s+4, with equality if and only if G1 = sK2 or G2 = sK2, while the maximum value of the product of the total domination numbers of G1 and G2 is max{8s,⌊(s+6)2/4 ⌋}.


2011 ◽  
Vol 20 (4) ◽  
pp. 617-621 ◽  
Author(s):  
ABBAS MEHRABIAN

We consider a variant of the Cops and Robbers game where the robber can movetedges at a time, and show that in this variant, the cop number of ad-regular graph with girth larger than 2t+2 is Ω(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connectedn-vertex graph can be as large as Ω(n2/3) ift≥ 2, and Ω(n4/5) ift≥ 4. This improves the Ω($n^{\frac{t-3}{t-2}}$) lower bound of Frieze, Krivelevich and Loh (Variations on cops and robbers,J. Graph Theory, to appear) when 2 ≤t≤ 6. We also conjecture a general upper boundO(nt/t+1) for the cop number in this variant, generalizing Meyniel's conjecture.


10.37236/429 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Dankelmann ◽  
L. Volkmann

Soares [J. Graph Theory 1992] showed that the well known upper bound $\frac{3}{\delta+1}n+O(1)$ on the diameter of undirected graphs of order $n$ and minimum degree $\delta$ also holds for digraphs, provided they are eulerian. In this paper we investigate if similar bounds can be given for digraphs that are, in some sense, close to being eulerian. In particular we show that a directed graph of order $n$ and minimum degree $\delta$ whose arc set can be partitioned into $s$ trails, where $s\leq \delta-2$, has diameter at most $3 ( \delta+1 - \frac{s}{3})^{-1}n+O(1)$. If $s$ also divides $\delta-2$, then we show the diameter to be at most $3(\delta+1 - \frac{(\delta-2)s}{3(\delta-2)+s} )^{-1}n+O(1)$. The latter bound is sharp, apart from an additive constant. As a corollary we obtain the sharp upper bound $3( \delta+1 - \frac{\delta-2}{3\delta-5})^{-1} n + O(1)$ on the diameter of digraphs that have an eulerian trail.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1079 ◽  
Author(s):  
Jie Wei ◽  
Yufeng Nie ◽  
Wenxian Xie

Pearl’s conditioning method is one of the basic algorithms of Bayesian inference, and the loop cutset is crucial for the implementation of conditioning. There are many numerical algorithms for solving the loop cutset, but theoretical research on the characteristics of the loop cutset is lacking. In this paper, theoretical insights into the size and node probability of the loop cutset are obtained based on graph theory and probability theory. It is proven that when the loop cutset in a p-complete graph has a size of p − 2 , the upper bound of the size can be determined by the number of nodes. Furthermore, the probability that a node belongs to the loop cutset is proven to be positively correlated with its degree. Numerical simulations show that the application of the theoretical results can facilitate the prediction and verification of the loop cutset problem. This work is helpful in evaluating the performance of Bayesian networks.


2010 ◽  
Vol 2010 ◽  
pp. 1-11
Author(s):  
Qin Guo ◽  
Mingxing Luo ◽  
Lixiang Li ◽  
Yixian Yang

From the perspectives of graph theory and combinatorics theory we obtain some new upper bounds on the number of encoding nodes, which can characterize the coding complexity of the network coding, both in feasible acyclic and cyclic multicast networks. In contrast to previous work, during our analysis we first investigate the simple multicast network with source rateh=2, and thenh≥2. We find that for feasible acyclic multicast networks our upper bound is exactly the lower bound given by M. Langberg et al. in 2006. So the gap between their lower and upper bounds for feasible acyclic multicast networks does not exist. Based on the new upper bound, we improve the computational complexity given by M. Langberg et al. in 2009. Moreover, these results further support the feasibility of signatures for network coding.


2019 ◽  
Vol 29 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bo Ning ◽  
Xing Peng

AbstractThe famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least $${{(s + 1){N_{s + 1}}(G)} \over {{N_s}(G)}} + s - 1$$ edges, where Nj(G) denotes the number of j-cliques in G for 1≤ j ≤ ω(G). We also construct a family of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among applications, we show, for example, that the main results of [20], which are on the maximum possible number of s-cliques in an n-vertex graph without a path with ℓ vertices (and without cycles of length at least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex 2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected graph with circumference less than c and large minimum degree. We conclude this paper with an application of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in graphs.


2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


Sign in / Sign up

Export Citation Format

Share Document