scholarly journals A Survey: Security Challenges of Vanet And Their Current Solution

Author(s):  
R. Hemalatha, Et. al.

Vehicles have a very crucial role in our routine life; we use different kinds of transportation in our living world, massive increasing vehicle on the road insisting serious problem such as traffic jam, vehicle congestion, road accidents, the demand for more fuel etc., to subdue the all those problems, the technology has used which is called VANET (Vehicular ad-hoc networks) VANET is self-organized wireless network when it has demanded to make communication between vehicles to vehicles and vehicles to infrastructure. VANET successfully implements the intelligent transportation system (ITS), even the vehicles having short-range networks. Due to the rapid change of network topology, the VANET installation is challengeable on the vehicles. To give a safe drive and reduce car accidents, the communication among drivers of vehicles and roadside devices makes sure that should be authenticated; any wrong modification (or) correction in real-time communication may create system failure and affect road safety. This article provides a brief description of various challenging issues in VANET and presents some existing solutions for these problems. Later, we discussed the current status of research and future goals. With this article, researchers and academicians can have a more detailed VANET and research trends in this emerging field.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3622 ◽  
Author(s):  
Jin-Woo Kim ◽  
Jae-Wan Kim ◽  
Dong-Keun Jeon

Vehicular ad hoc networks (VANETs) provide information and entertainment to drivers for safe and enjoyable driving. Wireless Access in Vehicular Environments (WAVE) is designed for VANETs to provide services efficiently. In particular, infotainment services are crucial to leverage market penetration and deployment costs of the WAVE standard. However, a low presence of infrastructure results in a shadow zone on the road and a link disconnection. The link disconnection is an obstacle to providing safety and infotainment services and becomes an obstacle to the deployment of the WAVE standard. In this paper, we propose a cooperative communication protocol to reduce performance degradation due to frequent link disconnection in the road environment. The proposed protocol provides contention-free data delivery by the coordination of roadside units (RSUs) and can provide the network QoS. The proposed protocol is shown to enhance throughput and delay through the simulation.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2772
Author(s):  
Gleb Dubosarskii ◽  
Serguei Primak

Anti-jamming games have become a popular research topic. However, there are not many publications devoted to such games in the case of vehicular ad hoc networks (VANETs). We considered a VANET anti-jamming game on the road using a realistic driving model. Further, we assumed the quadratic power function in both vehicle and jammer utility functions instead of the standard linear term. This makes the game model more realistic. Using mathematical methods, we expressed the Nash equilibrium through the system parameters in single-channel and multi-channel cases. Since the network parameters are usually unknown, we also compared the performance of several reinforcement learning algorithms that iteratively converge to the Nash equilibrium predicted analytically without having any information about the environment in the static and dynamic scenarios.


Author(s):  
Mekelleche Fatiha ◽  
Haffaf Hafid

Vehicular Ad-Hoc Networks (VANETs), a new mobile ad-hoc network technology (MANET), are currently receiving increased attention from manufacturers and researchers. They consist of several mobile vehicles (intelligent vehicles) that can communicate with each other (inter-vehicle communication) or with fixed road equipment (vehicle-infrastructure communication) adopting new wireless communication technologies. The objective of these networks is to improve road safety by warning motorists of any event on the road (accidents, hazards, possible deviations, etc.), and make the time spent on the road more pleasant and less boring (applications deployed to ensure the comfort of the passengers). Practically, VANETs are designed to support the development of Intelligent Transportation Systems (ITS). The latter are seen as one of the technical solutions to transport challenges. This chapter, given the importance of road safety in the majority of developed countries, presents a comprehensive study on the VANET networks, highlighting their main features.


The number of vehicles on the road are increasing rapidly day by day, which leads to massive road congestions and traffic deadlocks. This paper proposes a model for an algorithm-based technique for efficient resolution of road traffic deadlocks, which would work on the technologies related to the Internet of Vehicles (IoV), while keeping the safe and efficient movement of vehicles along with the maintenance of constant communication with nearby vehicles and roadside infrastructure using Vehicular Ad-hoc Networks (VANETs). This would ultimately aid towards the optimization of road traffic, which is very much a need of the hour considering the ever-increasing amount of traffic on the roads today. We make use of two important phases, namely, Deadlock Detection Phase and Deadlock Resolution Phase in order to resolve traffic deadlocks. An equally important focus has been put towards a deep understanding of the motivation behind the efforts put in this paper by examining the present scenario of road traffic conditions and their resulting complications, and how the proposed model could potentially help resolve such complications. It also involves a brief discussion on VANETs, which provides an efficient means of connecting the vehicles together in a network for seamless communications


Author(s):  
Pietro Manzoni ◽  
Carlos T. Calafate ◽  
Juan-Carlos Cano ◽  
Antonio Skarmeta ◽  
Vittoria Gianuzzi

Vehicular Ad hoc NETworks (VANETs) is an area under intensive research that promises to improve security on the road by developing an intelligent transport system (ITS). The main purpose is to create an inter-communication network among vehicles, as well as between vehicles and the supporting infrastructure. The system pretends to offer drivers data concerning other nearby vehicles, especially those within sight. The problem of information sharing among vehicles and between the vehicle and the infrastructure is another critical aspect. A general communication infrastructure is required for the notification, storage, management, and provision of context-aware information about user travel. Ideally an integrated vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication paradigm enriched with an information management system would solve the problem. The infrastructure should manage all the collected safety events garnered from vehicles and the interesting information to be provided to the user, which is adapted to the car context and driver preferences. Finally, security issues should be considered. Since the information conveyed over a vehicular network may affect critical decisions, fail-safe security is a necessity. The first directive for any V2V communication scheme is, therefore, that every safety message must be authenticated. Because of the high speed and therefore short duration within which communication between two cars is possible, communication must be non-interactive, and message overhead must be very low. The urgency of safety messages implies that authentication must be instantaneous without additional communication. Moreover, providing strong security in vehicular networks raises important privacy concerns that must also be considered. Safety messages include data that is dangerous to the personal privacy of vehicle owners. Most relevant is the danger of tracking a vehicle through positional information. A set of security basics to address these challenges should be proposed that can be used as the building blocks of secure applications. In this article we will focus on the aforementioned technologies and engineering issues related to vehicular ad-hoc networks, emphasizing the challenges that must be overcome to accomplish the desired vehicular safety infrastructure.


Author(s):  
S. Lahdya ◽  
T. Mazri

Abstract. For the past twenty years, the automotive industry and research organizations have been aiming to put fully autonomous cars on the road. These cars which can be driven without the intervention of a driver, use several sensors and artificial intelligence technologies simultaneously, which allow them to detect the environment in order to merge the information obtained to analyze it, decide on an action, and to implement it. Thus, we are at the dawn of a revolution in the world of transport and mobility, which leads us to ensure the movement of the autonomous car in a safe manner. In this paper, we examine certain attacks on autonomous cars such as the denial of service attack, as well as the impact of these attacks on the last two levels of vehicle autonomy.


Author(s):  
Arjun Shakdher ◽  
Kavita Pandey

Each year, thousands of people in developing countries die due to delayed medical response. A common complaint is that emergency vehicles respond late and when they reach the hospital, precious time is lost in understanding the patient trauma before the doctors can get to work. A large number of deaths can be prevented if medical services can be provided to the victims in time, which can happen when the emergency wing of a hospital has advance information about the trauma before the patient reaches the hospital. Most hospitals lack communication infrastructure that allows them to coordinate with emergency vehicles bringing patients to hospital. In developed countries, Vehicular Ad-hoc Networks (VANETs) are prevalent. These networks use vehicles as mobile nodes to create a small-interconnected network on the road. A mobile application based on the principle of VANETs in combination with wireless communication and database management has been devised, that when integrated with emergency vehicles and hospitals, provides a seamless medical response system at times of an emergency.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Mikhail Buinevich ◽  
Andrei Vladyko

During the last decade there has been an essential development of wireless communication technologies for intelligent transportation system (ITS) applications for motor transport; these advanced infocommunication technologies are called vehicular ad hoc networks (VANET). VANET/ITS, in particular, inform and warn drivers about possible obstacles, and also the possibility of how to organize coordinated actions. Therefore, any violation of its functioning by cyber attacks automatically influences the safety of people and automotive engineering on the road. The purpose of this article is to provide an analytical overview of cyber attacks on VANET/ITS, presented in state-of-the-art publications on this topic by the prediction of its cyber resistance. We start with an analysis of the top 10 cyber threats, considered according to the following schemes: attack mechanism, vulnerability, damage, object of attack, and a counter measure. We then set out a synergistic approach for assessing the cyber resistance of the forward-looking VANET/ITS conceptual model, formed by the merger of the internet of vehicles and software-defined networking technology. Finally, we identify open issues and associated research opportunities, the main ones being the formalization of threats, vulnerability stratification, the choice of the level of network management centralization and, last but not least, the modeling and prediction of VANET/ITS cyber resistance.


Sign in / Sign up

Export Citation Format

Share Document