scholarly journals Analysis Of Heart Disease Using Machine Learning Techniques

Author(s):  
Samson Cherlapally Et.al

There is a very large number in the health sector and special methods are also used systematically. Data exchange is one of the most commonly used methods. Heart disease is one of the leading causes of death in the world. This system predicts the possibility of heart disease. The results of this system provide a 100% risk of heart disease. The data used are categorized according to medical criteria. The system evaluates these parameters using data extraction methods used in Python using two basic machine learning algorithms, the Solution Tree Algorithm, and the algorithm that demonstrates the best accuracy in heart disease.

Author(s):  
Baban. U. Rindhe ◽  
Nikita Ahire ◽  
Rupali Patil ◽  
Shweta Gagare ◽  
Manisha Darade

Heart-related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need fora reliable, accurate, and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart-related diseases. Heart is the next major organ comparing to the brain which has more priority in the Human body. It pumps the blood and supplies it to all organs of the whole body. Prediction of occurrences of heart diseases in the medical field is significant work. Data analytics is useful for prediction from more information and it helps the medical center to predict various diseases. A huge amount of patient-related data is maintained on monthly basis. The stored data can be useful for the source of predicting the occurrence of future diseases. Some of the data mining and machine learning techniques are used to predict heart diseases, such as Artificial Neural Network (ANN), Random Forest,and Support Vector Machine (SVM).Prediction and diagnosingof heart disease become a challenging factor faced by doctors and hospitals both in India and abroad. To reduce the large scale of deaths from heart diseases, a quick and efficient detection technique is to be discovered. Data mining techniques and machine learning algorithms play a very important role in this area. The researchers accelerating their research works to develop software with thehelp of machine learning algorithms which can help doctors to decide both prediction and diagnosing of heart disease. The main objective of this research project is to predict the heart disease of a patient using machine learning algorithms.


Author(s):  
Abhay Agrahary

Heart disease is one of the most fatal problems in the whole world, which cannot be seen with a naked eye and comes instantly when its limitations are reached. Therefore, it needs accurate diagnosis at accurate time. Health care industry produced huge amount of data every day related to patients and diseases. However, this data is not used efficiently by the researchers and practitioners. Today healthcare industry is rich in data however poor in knowledge. There are various data mining and machine learning techniques and tools available to extract effective knowledge from databases and to use this knowledge for more accurate diagnosis and decision making. Increasing research on heart disease predicting systems, it become significant to summarize the completely incomplete research on it. The main objective of this research paper is to summarize the recent research with comparative results that has been done on heart disease prediction and also make analytical conclusions. From the study, it is observed Naive Bayes with Genetic algorithm; Decision Trees and Artificial Neural Networks techniques improve the accuracy of the heart disease prediction system in different scenarios. In this paper commonly used data mining and machine learning techniques and their complexities are summarized.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 108
Author(s):  
V Srinivas ◽  
K Aditya ◽  
G Prasanth ◽  
R G.Babukarthik ◽  
S Satheeshkumar ◽  
...  

Heart disease and machine learning are the two different words where one is related to medical field and another one to artificial intelligence. In medical filed most of them are facing the problems with the heart disease and machine learning is developing area in computer science. Heart disease is general called cardiac disease where it gives the more data or information, it is to be collected to give the reports for the patients and the machine learning also requires the data for predicting and to solve the problems. Machine learning techniques are used in prediction of heart diseases where it gives the faster prediction with less computation time and better accuracy to progress their health. Heart disease prediction requires lot of data for predicting and in cloud computing also we have more data and the data available in cloud it is difficult to analyze. So we use machine learning algorithms or techniques to predict the heart disease and the in the similar way we can apply these algorithms or techniques to predict or analyze the data that is available in cloud. In this paper we are going to use machine learning algorithms called Backpropagation Algorithm and later we use optimization algorithm later. Backpropagation algorithm deals with the artificial neural networks. Backpropagation is a method used to calculate the error contribution of each neuron after a batch of data (in image recognition, multiple images) is processed. This is used by an enveloping optimization algorithm to adjust the weight of each neuron, completing the learning process for that case. Machine learning algorithms and techniques are used for recognize the intensity of risk issues in humans and it helps the patients to take safety measures in well advances to save the patient’s life. 


2021 ◽  
Vol 36 (1) ◽  
pp. 260-264
Author(s):  
S. Ravi ◽  
Dr.M. Sambath ◽  
Dr.J. Thangakumar ◽  
Danam Kumar ◽  
Gorantla Naveen ◽  
...  

As big data becomes more prevalent in the healthcare and medical sectors, accurate medical data collection benefits early diagnosis of heart disease, hospital treatment, and government resources. However, where medical data quality is lacking, understanding accuracy suffers. Consequently, some field diseases have unique features in different regions, which can make illness more difficult. It is now more hard to predict outbreaks. We automate machine learning algorithms for efficient epidemic detection in bacterial infection population in this paper. We put the modified forecasts to the test using securely and efficiently datasets. areas of the region to improve the situation of lost data, we use a predictive modeling approach to restore inaccurate value. Focused upon its patient's signs, a heart attack is suspected. Models were built using machine learning techniques. As a consequence, the accuracy is pinpoint accurate. The Flask web interface is used to build the Application. In this research, we shall conduct experiments using machine learning methods.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1089
Author(s):  
Sung-Hee Kim ◽  
Chanyoung Jeong

This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO2) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO2 nanostructures’ thicknesses by performing anodization. We successfully grew TiO2 films with different thicknesses by one-step anodization in ethylene glycol containing NH4F and H2O at applied voltage differences ranging from 10 V to 100 V at various anodization durations. We found that the thicknesses of TiO2 nanostructures are dependent on anodization voltages under time differences. Therefore, we tested the feasibility of applying machine learning algorithms to predict the deformation of TiO2. As the characteristics of TiO2 changed based on the different experimental conditions, we classified its surface pore structure into two categories and four groups. For the classification based on granularity, we assessed layer creation, roughness, pore creation, and pore height. We applied eight machine learning techniques to predict classification for binary and multiclass classification. For binary classification, random forest and gradient boosting algorithm had relatively high performance. However, all eight algorithms had scores higher than 0.93, which signifies high prediction on estimating the presence of pore. In contrast, decision tree and three ensemble methods had a relatively higher performance for multiclass classification, with an accuracy rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and multiclass classifications. We believe that these results show that we can apply machine learning techniques to predict surface quality improvement, leading to smart manufacturing technology to better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.


Sign in / Sign up

Export Citation Format

Share Document