Experimental Modal Analysis: Efficient Geometry Model Creation Using Optical Techniques

2006 ◽  
Vol 49 (2) ◽  
pp. 104-113 ◽  
Author(s):  
Steven Pauwels ◽  
Jan Debille ◽  
Jeff Komrower ◽  
Jenny Lau

Experimental modal analysis (EMA) is widely used to characterize the dynamic properties of structures. Recently EMA is being used on more complex structures often involving hundreds of measurement points. Modal analysis results are frequently used in combination with numerical models, imposing higher standards on the quality of the modal parameter estimation and the accuracy of the geometry models. These requirements are often contradictory to the availability of test cells and prototypes. In order to solve this challenge, innovative solutions using optical techniques have been developed that simplify and accelerate the creation of a geometrical model of a test object, while at the same time increase the accuracy of measured coordinates. Industrial applicability of these techniques is proven by a number of benchmarks on real-life structures.

2017 ◽  
Vol 16 (3) ◽  
pp. 005-012 ◽  
Author(s):  
Mariusz Żółtowski ◽  
Krzysztof Napieraj

Experimental modal analysis has grown steadily in popularity since the advent of the digital FFT spectrum analyser in the 1970’s. This days impact testing has become widespread as a fast and economical means of finding the vibration modes of a machine or structure. Its significantly use ascending roles can be seen also in the civil engineering industry [6]. This paper reviews the main topics associated with experimental modal analysis including making FRF measurements, modal excitation techniques, and modal parameter estimation from a set of FRFs.


2019 ◽  
Vol 11 (2) ◽  
pp. 324-337
Author(s):  
Sk Abdul Kaium ◽  
Sayed Abul Hossain ◽  
Jafar Sadak Ali

Purpose The purpose of this paper is to highlight that the need for improved system identification methods within the domain of modal analysis increases under the impulse of the broadening field of applications, e.g., damage detection and vibro-acoustics, and the increased complexity of today’s structures. Although significant research efforts during the last two decades have resulted in an extensive number of parametric identification algorithms, most of them are certainly not directly applicable for modal parameter extraction. So, based on this, the aim of the present work is to develop a technique for modal parameter extraction from the measured signal. Design/methodology/approach A survey and classification of the different modal analysis methods are made; however, the focus of this thesis is placed on modal parameter extraction from measured time signal. Some of the methods are examined in detail, including both single-degree-of-freedom and multi-degree-of-freedom approaches using single and global frequency-response analysis concepts. The theory behind each of these various analysis methods is presented in depth, together with the development of computer programs, theoretical and experimental examples and discussion, in order to evaluate the capabilities of those methods. The problem of identifying properties of structures that possess close modes is treated in particular detail, as this is a difficult situation to handle and yet a very common one in many structures. It is essential to obtain a good model for the behavior of the structure in order to pursue various applications of experimental modal analysis (EMA), namely: updating of finite element models, structural modification, subsystem-coupling and calculation of real modes from complex modes, to name a few. This last topic is particularly important for the validation of finite element models, and for this reason, a number of different methods to calculate real modes from complex modes are presented and discussed in this paper. Findings In this paper, Modal parameters like mode shapes and natural frequencies are extracted using an FFT analyzer and with the help of ARTeMiS, and subsequently, an algorithm has been developed based on frequency domain decomposition (FDD) technique to check the accuracy of the results as obtained from ARTeMiS. It is observed that the frequency domain-based algorithm shows good agreement with the extracted results. Hence the following conclusion may be drawn: among several frequency domain-based algorithms for modal parameter extraction, the FDD technique is more reliable and it shows a very good agreement with the experimental results. Research limitations/implications In the case of extraction techniques using measured data in the frequency domain, it is reported that the model using derivatives of modal parameters performed better in many situations. Lack of accurate and repeatable dynamic response measurements on complex structures in a real-life situation is a challenging problem to analyze exact modal parameters. Practical implications During the last two decades, there has been a growing interest in the domain of modal analysis. Evolved from a simple technique for troubleshooting, modal analysis has become an established technique to analyze the dynamical behavior of complex mechanical structures. Important examples are found in the automotive (cars, trucks, motorcycles), railway, maritime, aerospace (aircrafts, satellites, space shuttle), civil (bridges, buildings, offshore platforms) and heavy equipment industry. Social implications Presently structural health monitoring has become a significantly important issue in the area of structural engineering particularly in the context of safety and future usefulness of a structure. A lot of research is being carried out in this area incorporating the modern sophisticated instrumentations and efficient numerical techniques. The dynamic approach is mostly employed to detect structural damage, due to its inherent advantage of having global and location-independent responses. EMA has been attempted by many researchers in a controlled laboratory environment. However, measuring input excitation force(s) seems to be very expensive and difficult for the health assessment of an existing real-life structure. So Ambient Vibration Analysis is a good alternative to overcome those difficulties associated with the measurement of input excitation force. Originality/value Three single bay two storey frame structure has been chosen for the experiment. The frame has been divided into six small elements. An algorithm has been developed to determine the natural frequency of those frame structures of which one is undamaged and the rest two damages in single element and double element, respectively. The experimental results from ARTeMIS and from developed algorithm have been compared to verify the effectiveness of the developed algorithm. Modal parameters like mode shapes and natural frequencies are extracted using an FFT analyzer and with the help of ARTeMiS, and subsequently, an algorithm has been programmed in MATLAB based on the FDD technique to check the accuracy of the results as obtained from ARTeMiS. Using singular value decomposition, the power Spectral density function matrix is decomposed using the MATLAB program. It is observed that the frequency domain-based algorithm shows good consistency with the extracted results.


2011 ◽  
Vol 23 (1) ◽  
pp. 180-195 ◽  
Author(s):  
Hua Yang ◽  
◽  
Takeshi Takaki ◽  
Idaku Ishii

In this study, we introduce the concept of dynamicsbased visual inspection with High-Frame-Rate (HFR) video analysis as a novel non-destructive active sensing method for verifying dynamic properties of a vibrating object. The HFR video is used for determining the structural dynamic properties of an object, such as its resonant frequencies and mode shapes, which can be estimated as modal parameters by modal analysis only when the object is excited. By improving and implementing a fast output-only modal parameter estimation algorithm on a real-time 2000-fps vision platform, the modal parameters of an excited object are simultaneously estimated as its input-invariant dynamic properties for dynamics-based visual inspection evenwhen the objects undergo different excitation conditions. Our simultaneous 2000-fps visual inspection system can facilitate non-destructive and longterm monitoring of the structures of beam-shaped objects vibrating at dozens or hundreds of hertz, and it can detect small changes in the dynamic properties of these objects caused by internal defects such as fatigue cracks in real time, even when their static appearances are similar. To demonstrate the performance of the proposed 2000-fps simultaneous dynamics-based visual inspection approach, the resonant frequencies and mode shapes for beam-shaped cantilevers with different artificial cracks and weights, excited by human finger tapping, were estimated in real time.


2013 ◽  
Vol 486 ◽  
pp. 233-238
Author(s):  
Fillemon Nduvu Nangolo

Modal parameter estimation is the estimation of frequency, damping ratio, and modal coefficients from experimental data. Modal analysis techniques are a common method used to determine these properties. The Least-Squares Complex Exponential (LSCE) and the Eigensystem Realization Algorithm (ERA) are one of the popular methods of modal analysis techniques. This paper presents an experimental verification of the LSCE and ERA methods. The investigation focuses on the estimation of natural frequencies, damping ratio and modal coefficients. To investigate this, artificial analytical data were processed in MATLAB environment to estimate the modal parameters. The identified vibration parameters from the LSCE and ERA were compared with the values based on classical dynamic theory, and the natural frequency and damping ratios percent of error were calculated.


2020 ◽  
pp. 75-79
Author(s):  
V.M. Utenkov ◽  
S.I. Dos'ko ◽  
A.A. Molchanov ◽  
V.A. Kuts

The results of studies of the dynamic properties of a turning tool cutter are considered, obtained using experimental modal analysis, in the arsenal of which there are several identification methods. For comparison, the results of four methods are given. Keywords: cutting processing, vibration, tool, dynamic properties, tool holder, experimental modal analysis. [email protected]


2015 ◽  
Vol 76 (8) ◽  
Author(s):  
A. I. Yusuf ◽  
M. A. Norliyati ◽  
M. A. Yunus ◽  
M. N. Abdul Rani

Elastomeric bearing is a significant device in structures such as in bridges and buildings. It is used to isolate the ground structure (substructure) and the above ground structure (superstructure) from seismic loads such as earthquake load. Understanding the dynamic behavior of the elastomeric bearing in terms of natural frequencies, mode shapes and damping are increasingly important especially in improving the design and the failure limit of the elastomeric bearing. Modal analysis is one of the methods used to determine the dynamic properties of any materials. Hence, the main objective of this research is to determine the dynamic properties of elastomeric bearing components in terms of natural frequencies, mode shapes, and damping via numerical and experimental modal analysis. This method had been successfully performed in investigating the dynamic behavior of rubber and steel shim plate.


Author(s):  
Ulrich Gabbert ◽  
Manfred Zehn ◽  
Friedrich Wahl

Abstract The paper deals with improvements of accuracy of structural dynamic calculations by using both the advantages of Finite Element Analysis (FEA) and Experimental Modal Analysis (EMA). The basis for such improvements are reasonable mechanical and numerical models and accurate frequency response measurements (eigenfrequencies and mode shapes). The paper deals first with reasons for and estimations of errors in numerical and experimental analysis. It can be shown by theory and experiment that neither FEA nor EMA models are unique, due to inevitable incompleteness of the mode shapes and eigenfrequencies from a vibration test. Verification and updating of FE models by linking FEA with EMA are discussed in the paper and mainly focussed on FE models with a large number of degrees of freedom. Hence an update method has been introduced, which leads to an improved model in a relatively small quantity of computer time. It can be shown, that based on measured eigenfrequencies and calculated eigenvectors, an updating of FE-models for real engineering problems, by changing the mass matrix only, is a very efficient procedure with a surprisingly good quality updated model.


Sign in / Sign up

Export Citation Format

Share Document