scholarly journals IN VITRO ACTIVITY OF BIOACTIVE MOLECULES INCORPORATED INTO POLY (3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)/ POLY(ε-CAPROLACTONE) SCAFFOLDS

2018 ◽  
Vol 7 (2) ◽  
pp. 89-101 ◽  
Author(s):  
L. V. Antonova ◽  
V. G. Matveeva ◽  
E. A. Velikanova ◽  
M. Y. Khanova ◽  
V. V. Sevostyanova ◽  
...  

Background We fabricated biodegradable, bioactive scaffolds to guide the differentiation of endothelial progenitor cells. Aim To study in vitro activity of the bioactive factors incorporated into the poly (3-hydroxubutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) (PHBV/PCL) scaffolds. Methods Nonwoven scaffolds were blended of PHBV and PCL utilizing either separate or combined incorporation of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and stromal cell-derived factor-1α (SDF-1α) by emulsion electrospinning. We further studied adhesion, viability, and proliferation of EA.hy 926 endothelial cells cultured on these scaffolds and evaluated vasculogenesis, cell index, and secretory profile in response to the addition of abovementioned bioactive factors. Results We showed that VEGF, bFGF, and SDF-1α retain their bioactivity upon the incorporation into the PHBV/PCL scaffolds. Scaffolds with all three bioactive factors incorporated demonstrated superior performance in comparison with those containing any of these factors alone. Diffusion of the bioactive factors into the culture medium stimulated the secretion of interleukin-10, and VE-cadherin by endothelial cells that indicated anti-inflammatory response and tight intercellular junctions. We also detected the low level of secreted VEGF-A from the scaffolds with VEGF suggestive of its physiological regulation. Conclusion Bioactive factors retain their bioactivity upon the incorporation into the PHBV/ PCL scaffolds. Combination of VEGF, bFGF, and SDF-1a improves cellular response compared to the incorporation of any of these factors alone.

2007 ◽  
Vol 2 (8) ◽  
pp. S613-S614
Author(s):  
Joachim Gullbo ◽  
Michael Bergqvist ◽  
Malin Wickström ◽  
Peter Ericsson ◽  
Linda Sooman ◽  
...  

Author(s):  
D.J.P. Ferguson ◽  
M. Virji ◽  
H. Kayhty ◽  
E.R. Moxon

Haemophilus influenzae is a human pathogen which causes meningitis in children. Systemic H. influenzae infection is largely confined to encapsulated serotype b organisms and is a major cause of meningitis in the U.K. and elsewhere. However, the pathogenesis of the disease is still poorly understood. Studies in the infant rat model, in which intranasal challenge results in bacteraemia, have shown that H. influenzae enters submucosal tissues and disseminates to the blood stream within minutes. The rapidity of these events suggests that H. influenzae penetrates both respiratory epithelial and endothelial barriers with great efficiency. It is not known whether the bacteria penetrate via the intercellular junctions, are translocated within the cells or carried across the cellular barrier in 'trojan horse' fashion within phagocytes. In the present studies, we have challenged cultured human umbilical cord_vein endothelial cells (HUVECs) with both capsulated (b+) and capsule-deficient (b-) isogenic variants of one strain of H. influenzae in order to investigate the interaction between the bacteria and HUVEC and the effect of the capsule.


Planta Medica ◽  
2012 ◽  
Vol 78 (05) ◽  
Author(s):  
A Husni ◽  
S Ross ◽  
O Dale ◽  
C Gemelli ◽  
G Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document