scholarly journals Improved UV Spectrophotometric Method for Precise, Efficient and Selective Determination of Dexamethasone in Pharmaceutical Dosage Forms

Author(s):  
Rúbia Adrieli Sversut ◽  
James Cabral Vieira ◽  
Aline Marques Rosa ◽  
Anil Kumar Singh ◽  
Marcos Serrou Do Amaral ◽  
...  
2001 ◽  
Vol 69 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Alaa Amin

A spectrophotometric method for the selective determination of paracetamol based on its reaction with pyrochatechol violet under basic conditions to form an ion-pair complex is described. The absorption maximum of the coloured ion-pair formed is observed at 652 nm and the molar absorptivity is 4.54 x10-3l mol-1 cm-1. Beer's law is obeyed over the concentration range 0.5-34.0 μg ml-1, while that obtained using Ringbom method is in the range 3.5 -32.0 μg ml-1. There is no interference from common additives, excipients and commercial drugs present in their formulations suggesting a highly selective procedure compared with others. Statistical analysis of the obtained results showed that there is, no significant difference and absence of any systematic error in the method compared with the official one. The method is simple, rapid and convenient and was applied successfully to the determination of paracetamol in pure and in its dosage forms compared with the official method.


Author(s):  
Sagar Suman Panda ◽  
Ravi Kumar B V V ◽  
D Patanaik

A simple, precise and accurate spectrophotometric method was developed for analysis of the osteoporesis drug alendronate sodium (ALS). The method is based on reaction of the drug with sodium-1,2-naphthoquinone-4-sulphonate (NQS) in presence of alkali to form a brown colored complex giving absorption maximum at 525 nm. The drug obeyed Beer’s law in the range of 5-70 µg/ml with a correlation coefficient of 0.999. The LOD and LOQ values are 1.7 µg/ml and 5.0 µg/ml, respectively. The average recoveries for recovery study were found to be in the range of 99.37%-100.46%. The R.S.D. values for intraday and inter-day precision were found to be 0.48 and 0.62, respectively. The optimized assay conditions were applied successfully for determination of ALS in pharmaceutical dosage forms. No interference was observed from the excipients present in the dosage form. The method is statistically validated as per the ICH requirements.  


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (09) ◽  
pp. 31-35
Author(s):  
R Rambabu ◽  
◽  
S Vidyadhara ◽  
J Subbarao

A simple and sensitive spectrophotometric method for the determination of ramipril and telmisartan in pharmaceutical dosage forms has been developed. The absorption maxima were found at 220nm for ramipril and 297nm for telmisartan using 0.1N NaOH as solvent. Beer’s law was obeyed for both the drugs in the concentration range of 2-10μg/ml with correlation coefficients 0.999 for both ramipril and telmisartan. The limits of detection for ramipril and telmisartan were found to be 0.142 and 0.405μg/mL respectively and the limits of quantitation were 0.43 and 1.22μg/mL. Accuracy of the method was verified by performing recovery studies using simultaneous equation method and found to be 98.33 to 99.54%w/w for ramipril and 99.36 to 99.82 %w/w for telmisartan. %RSD of repeatability and intermediate precision studies were found to be <2 for both the drugs. Ruggedness of the method was checked by changing analyst worked and instrument used. In both the cases, the %RSD was found to be less than 2.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


2015 ◽  
Vol 12 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Nahid Sharmin ◽  
Nazia Sultana Shanta ◽  
Sitesh C Bachar

A simple, reliable, precise and sensitive UV-spectrophotometric method was developed and validated for the estimation of azithromycin in pharmaceutical dosage form and compared with official USP 2010 method. The proposed method utilizes the oxidation of azithromycin with potassium permanganate to liberate formaldehyde. This formaldehyde reacts with acetone-ammonium reagent and produces yellow colored chromogen 3,5-diacetyl-2,6-dihydrolutidine. The colored solution exhibited a maximum absorption at 412 nm which can be detected with UVspectrophotometer. The method was found linear over the concentration range 80% to 120% of the working concentration (R2=0.999). The intra- and inter-day RSD (n = 6) was ? 2.0%. The developed method was validated according to ICH guidelines and values of accuracy, precision and other statistical analysis were found to be in good accordance with the prescribed values. The proposed method was successfully applied for determination of azithromycin and the results have been compared with HPLC and thus enabling the utility of this new method for routine analysis azithromycin in pharmaceutical dosage forms DOI: http://dx.doi.org/10.3329/dujps.v12i2.21981 Dhaka Univ. J. Pharm. Sci. 12(2): 171-179, 2013 (December)


Author(s):  
N V Fares ◽  
Haitham A El Fiky ◽  
Amr M Badawey ◽  
Maha F Abd El Ghany

Abstract Background Validated UPLC method and TLC densitometric method were prescribed for determination of antihypertensive components. Objectives: To establish and validate rapid and accurate Ultra performance liquid chromatographic (UPLC) and TLC densitometric methods for determination of Xipamide and Triamterene in pure and dosage forms. Methods The first method; UPLC method, depended on using Agilent Zorbax Eclipse Plus C8 (50 mm × 2.1 mm, 1.8 μm), as the column, mobile phase composed of (acetonitrile-water) (70 + 30, v/v) adjusted by acetic acid to obtain (pH 3), 0.2 mL/min flow rate and UV detection at 231.4 nm. The second method was a thin layer chromatography (TLC) densitometric method, separation was achieved by using toluene-methanol-ethyl chloride-acetic acid (7 + 2 + 1 + 0.2, v/v/v) as the mobile phase, pre coated silica gel plates as the stationary phase and UV detection at 300.0 nm. Results The obtained results were validated and statistically compared with official and reported methods. The obtained results showed high accuracy and reproducible results with excellent mean recoveries for both drugs. Conclusions The UPLC method showed shorter retention time for both Xipamide (0.88 min) and Triamterene (0.63 min), lower detection limit less than 0.055 µg/mL for both drugs with high selectivity, decreased injection volume (1 µL) and lower flow rate other than any HPLC method. Both proposed methods were sensitive, selective, and effectively applied to pure and dosage forms (Epitens®). Highlights Unprecedented sensitive, rapid, and reproducible UPLC and TLC methods were developed for selective determination of mixture of Xipamide and Triamterene with LOD less than 0.076 µg/mL for both drugs.


Química Nova ◽  
2010 ◽  
Vol 33 (4) ◽  
pp. 968-971 ◽  
Author(s):  
Nájla Mohamad Kassab ◽  
Marcos Serrou do Amaral ◽  
Anil Kumar Singh ◽  
Maria Inês Rocha Miritello Santoro

Sign in / Sign up

Export Citation Format

Share Document