scholarly journals INTERACTION OF RECOMBINANT TATA-BINDING PROTEIN WITH MAMMALS GENES PROMOTER TATA

2007 ◽  
Vol 5 (2) ◽  
pp. 44-49 ◽  
Author(s):  
Ludmila K Savinkova ◽  
Irina A Drachkova ◽  
Michail P Ponomarenko ◽  
Marina V Lysova ◽  
Tatiana V Arshinova ◽  
...  

Quantitative characteristics of interaction recombinant TATA-binding protein (TBP) with oligonucleotides identical to natural TATA-containing promoter region genes of mammals are received. In particular, new experimental data about the importance guanine in 8-th position of the TATA-element for affinity to TBP are received. The experimental data, testifying that raised maintenance G and С nucleotides in flanks of TATA-element does the contribution to affinity to TBP are received.

2001 ◽  
Vol 21 (5) ◽  
pp. 1737-1746 ◽  
Author(s):  
Susan M. Kraemer ◽  
Ryan T. Ranallo ◽  
Ryan C. Ogg ◽  
Laurie A. Stargell

ABSTRACT TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.


1993 ◽  
Vol 13 (4) ◽  
pp. 2593-2603 ◽  
Author(s):  
B A Purnell ◽  
D S Gilmour

A TATA complex that forms on the hsp70 promoter has been found to depend on sequence-specific interactions that occur at the transcription start and regions further downstream. The complex was detected with a gel shift assay and further characterized with interference assays. Antibodies reveal that the TATA-binding protein is in the complex. Interference assays localize specific contacts in the TATA element, the start site, and in a region approximately 25 bp downstream of the start site that contribute to either the assembly or the maintenance of the complex. Contact at the TATA element is made in the minor groove, as has been reported for the recombinant TATA-binding protein. Mutation in the TATA element or the start site of hsp70 causes complex formation to be more strongly dependent on contacts in the +25 region than in the normal core promoter. Examination of the hsp26 and histone H4 genes indicates that similar contacts contribute to the TATA complexes that form on these promoters. The results suggest that specific contacts downstream of the TATA element could play a key role in establishing the transcriptional potential of a gene by contributing to the interaction of the TATA-binding protein.


2002 ◽  
Vol 22 (24) ◽  
pp. 8735-8743 ◽  
Author(s):  
Robin M. Buratowski ◽  
Jessica Downs ◽  
Stephen Buratowski

ABSTRACT Temperature-sensitive mutants of TFIIB that are defective for essential interactions were isolated. One mutation (G204D) results in disruption of a protein-protein contact between TFIIB and TATA binding protein (TBP), while the other (K272I) disrupts an interaction between TFIIB and DNA. The TBP gene was mutagenized, and alleles that suppress the slow-growth phenotypes of the TFIIB mutants were isolated. TFIIB with the G204D mutation [TFIIB(G204D)] was suppressed by hydrophobic substitutions at lysine 239 of TBP. These changes led to increased affinity between TBP and TFIIB. TFIIB(K272I) was weakly suppressed by TBP mutants in which K239 was changed to hydrophobic residues. However, this mutant TFIIB was strongly suppressed by conservative substitutions in the DNA binding surface of TBP. Biochemical characterization showed that these TBP mutants had increased affinity for a TATA element. The TBPs with increased affinity could not suppress TFIIB(G204D), leading us to propose a two-step model for the interaction between TFIIB and the TBP-DNA complex.


1998 ◽  
Vol 18 (7) ◽  
pp. 3926-3935 ◽  
Author(s):  
Blossom Damania ◽  
Paul Lieberman ◽  
James C. Alwine

ABSTRACT Large T antigen (T antigen), the early gene product of simian virus 40 (SV40), is a potent transcriptional activator of both cellular and viral genes. Recently we have shown that T antigen is tightly associated with TFIID and, in this position, performs a TATA-binding protein (TBP)-associated factor (TAF)-like function. Based on this observation, we asked whether T antigen affected steps in preinitiation complex assembly. Using purified components in in vitro complex assembly assays, we found that T antigen specifically enhances the formation of the TBP-TFIIA complex on the TATA element. T antigen accomplishes this by increasing the rate of formation of the TBP-TFIIA complex on the TATA element and by stabilizing the complexes after they are formed on the promoter. In addition, DNA immunoprecipitation experiments indicate that T antigen is associated with the stabilized TBP-TFIIA complexes bound to the DNA. In this regard, it has previously been shown that T antigen interacts with TBP; in the present study, we show that T antigen also interacts with TFIIA in vitro. In testing the ability of T antigen to stabilize the TBP-TFIIA complex, we found that stabilization is highly sensitive to the specific sequence context of the TATA element. Previous studies showed that T antigen could activate simple promoters containing the TATA elements from thehsp70 and c-fos gene promoters but failed to significantly activate similar promoters containing the TATA elements from the promoters of the SV40 early and adenovirus E2a genes. We find that the ability to stabilize the TBP-TFIIA complex on thehsp70 and c-fos TATA elements, and not on the SV40 early and E2A TATA elements, correlates with the ability or inability to activate promoters containing these TATA elements.


1999 ◽  
Vol 274 (16) ◽  
pp. 11369-11375 ◽  
Author(s):  
Alpa Trivedi ◽  
Lisa S. Young ◽  
Ching Ouyang ◽  
Deborah L. Johnson ◽  
Karen U. Sprague

2005 ◽  
Vol 79 (17) ◽  
pp. 11082-11094 ◽  
Author(s):  
Achille François ◽  
Mickaël Guilbaud ◽  
Rafi Awedikian ◽  
Gilliane Chadeuf ◽  
Philippe Moullier ◽  
...  

ABSTRACT The p5 promoter region of adeno-associated virus type 2 (AAV-2) is a multifunctional element involved in rep gene expression, Rep-dependent replication, and site-specific integration. We initially characterized a 350-bp p5 region by its ability to behave like a cis-acting replication element in the presence of Rep proteins and adenoviral factors. The objective of this study was to define the minimal elements within the p5 region required for Rep-dependent replication. Assays performed in transfected cells (in vivo) indicated that the minimal p5 element was composed by a 55-bp sequence (nucleotides 250 to 304 of wild-type AAV-2) containing the TATA box, the Rep binding site, the terminal resolution site present at the transcription initiation site (trs+1), and a downstream 17-bp region that could potentially form a hairpin structure localizing the trs+1 at the top of the loop. Interestingly, the TATA box was absolutely required for in vivo but dispensable for in vitro, i.e., cell-free, replication. We also demonstrated that Rep binding and nicking at the trs+1 was enhanced in the presence of the cellular TATA binding protein, and that overexpression of this cellular factor increased in vivo replication of the minimal p5 element. Together, these studies identified the minimal replication origin present within the AAV-2 p5 promoter region and demonstrated for the first time the involvement of the TATA box, in cis, and of the TATA binding protein, in trans, for Rep-dependent replication of this viral element.


1996 ◽  
Vol 16 (8) ◽  
pp. 4456-4464 ◽  
Author(s):  
L A Stargell ◽  
K Struhl

Using a genetic screen, we isolated four TATA-binding protein (TBP) mutants that are specifically defective in vivo for the response to acidic activators. In contrast to previously described activation-defective TBP mutants, these TBP derivatives are not specifically defective for interactions with TATA elements or TFIIA. Three of these derivatives interact normally with a TATA element, TFIIA, TFIIB, or an acidic activation domain; presumably, they affect another protein-protein interaction important for transcriptional activation. The remaining derivative (with F-237 replaced by D) binds a TATA element with wild-type affinity, but the TBP-TATA complex has an altered electrophoretic mobility and interacts poorly with TFIIA and TFIIB; this suggests that the conformation of the TBP-TATA element complex plays a role in transcriptional activation. To determine the step at which the TBP derivatives were unable to activate transcription, we utilized an artificial recruitment assay in which TBP is targeted to the promoter via fusion to the LexA DNA-binding domain. Consistent with previous evidence that acidic activators can increase recruitment of TBP to the promoter in vivo, the activation defect of some of these TBP derivatives can be corrected by artificial recruitment. In contrast, the activation defect of the other TBP derivatives is not bypassed by artificial recruitment. Thus, these TBP mutants define two steps in the process of transcriptional stimulation by acidic activators: efficient recruitment to the TATA element and a postrecruitment interaction with a component(s) of the initiation complex.


1993 ◽  
Vol 13 (4) ◽  
pp. 2593-2603
Author(s):  
B A Purnell ◽  
D S Gilmour

A TATA complex that forms on the hsp70 promoter has been found to depend on sequence-specific interactions that occur at the transcription start and regions further downstream. The complex was detected with a gel shift assay and further characterized with interference assays. Antibodies reveal that the TATA-binding protein is in the complex. Interference assays localize specific contacts in the TATA element, the start site, and in a region approximately 25 bp downstream of the start site that contribute to either the assembly or the maintenance of the complex. Contact at the TATA element is made in the minor groove, as has been reported for the recombinant TATA-binding protein. Mutation in the TATA element or the start site of hsp70 causes complex formation to be more strongly dependent on contacts in the +25 region than in the normal core promoter. Examination of the hsp26 and histone H4 genes indicates that similar contacts contribute to the TATA complexes that form on these promoters. The results suggest that specific contacts downstream of the TATA element could play a key role in establishing the transcriptional potential of a gene by contributing to the interaction of the TATA-binding protein.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Rafal Donczew ◽  
Steven Hahn

ABSTRACT A yeast in vitro system was developed that is active for transcription at both TATA-containing and TATA-less promoters. Transcription with extracts made from cells depleted of TFIID subunit Taf1 demonstrated that promoters of both classes are TFIID dependent, in agreement with recent in vivo findings. TFIID depletion can be complemented in vitro by additional recombinant TATA binding protein (TBP) at only the TATA-containing promoters. In contrast, high levels of TBP did not complement Taf1 depletion in vivo and instead repressed transcription from both promoter types. We also demonstrate the importance of the TATA-like sequence found at many TATA-less promoters and describe how the presence or absence of the TATA element is likely not the only feature that distinguishes these two types of promoters.


Sign in / Sign up

Export Citation Format

Share Document