scholarly journals Contribution of sequences downstream of the TATA element to a protein-DNA complex containing the TATA-binding protein.

1993 ◽  
Vol 13 (4) ◽  
pp. 2593-2603 ◽  
Author(s):  
B A Purnell ◽  
D S Gilmour

A TATA complex that forms on the hsp70 promoter has been found to depend on sequence-specific interactions that occur at the transcription start and regions further downstream. The complex was detected with a gel shift assay and further characterized with interference assays. Antibodies reveal that the TATA-binding protein is in the complex. Interference assays localize specific contacts in the TATA element, the start site, and in a region approximately 25 bp downstream of the start site that contribute to either the assembly or the maintenance of the complex. Contact at the TATA element is made in the minor groove, as has been reported for the recombinant TATA-binding protein. Mutation in the TATA element or the start site of hsp70 causes complex formation to be more strongly dependent on contacts in the +25 region than in the normal core promoter. Examination of the hsp26 and histone H4 genes indicates that similar contacts contribute to the TATA complexes that form on these promoters. The results suggest that specific contacts downstream of the TATA element could play a key role in establishing the transcriptional potential of a gene by contributing to the interaction of the TATA-binding protein.

1993 ◽  
Vol 13 (4) ◽  
pp. 2593-2603
Author(s):  
B A Purnell ◽  
D S Gilmour

A TATA complex that forms on the hsp70 promoter has been found to depend on sequence-specific interactions that occur at the transcription start and regions further downstream. The complex was detected with a gel shift assay and further characterized with interference assays. Antibodies reveal that the TATA-binding protein is in the complex. Interference assays localize specific contacts in the TATA element, the start site, and in a region approximately 25 bp downstream of the start site that contribute to either the assembly or the maintenance of the complex. Contact at the TATA element is made in the minor groove, as has been reported for the recombinant TATA-binding protein. Mutation in the TATA element or the start site of hsp70 causes complex formation to be more strongly dependent on contacts in the +25 region than in the normal core promoter. Examination of the hsp26 and histone H4 genes indicates that similar contacts contribute to the TATA complexes that form on these promoters. The results suggest that specific contacts downstream of the TATA element could play a key role in establishing the transcriptional potential of a gene by contributing to the interaction of the TATA-binding protein.


2002 ◽  
Vol 22 (24) ◽  
pp. 8735-8743 ◽  
Author(s):  
Robin M. Buratowski ◽  
Jessica Downs ◽  
Stephen Buratowski

ABSTRACT Temperature-sensitive mutants of TFIIB that are defective for essential interactions were isolated. One mutation (G204D) results in disruption of a protein-protein contact between TFIIB and TATA binding protein (TBP), while the other (K272I) disrupts an interaction between TFIIB and DNA. The TBP gene was mutagenized, and alleles that suppress the slow-growth phenotypes of the TFIIB mutants were isolated. TFIIB with the G204D mutation [TFIIB(G204D)] was suppressed by hydrophobic substitutions at lysine 239 of TBP. These changes led to increased affinity between TBP and TFIIB. TFIIB(K272I) was weakly suppressed by TBP mutants in which K239 was changed to hydrophobic residues. However, this mutant TFIIB was strongly suppressed by conservative substitutions in the DNA binding surface of TBP. Biochemical characterization showed that these TBP mutants had increased affinity for a TATA element. The TBPs with increased affinity could not suppress TFIIB(G204D), leading us to propose a two-step model for the interaction between TFIIB and the TBP-DNA complex.


2000 ◽  
Vol 74 (5) ◽  
pp. 2459-2465 ◽  
Author(s):  
Pei-Fen Su ◽  
Shu-Yuan Chiang ◽  
Cheng-Wen Wu ◽  
Felicia Y.-H. Wu

ABSTRACT Adeno-associated virus type 2 (AAV) is known to inhibit the promoter activities of several oncogenes and viral genes, including the human papillomavirus type 16 (HPV-16) E6 and E7 transforming genes. However, the target elements of AAV on the long control region (LCR) upstream of E6 and E7 oncogenes are elusive. A chloramphenicol acetyltransferase assay was performed to study the effect of AAV on the transcription activity of the HPV-16 LCR in SiHa (HPV-positive) and C-33A (HPV-negative) cells. The results reveal that (i) AAV inhibited HPV-16 LCR activity in a dose-dependent manner, (ii) AAV-mediated inhibition did not require the HPV gene products, and (iii) the AAV replication gene product Rep78 was involved in the inhibition. Deletion mutation analyses of the HPV-16 LCR showed that regulatory elements outside the core promoter region of the LCR may not be direct targets of AAV-mediated inhibition. Further study with the electrophoretic mobility shift assay demonstrated that Rep78 interfered with the binding of TATA-binding protein (TBP) to the TATA box of the p97 core promoter more significantly than it disrupted the preformed TBP-TATA complex. These data thus suggest that Rep78 may inhibit transcription initiation of the HPV-16 LCR by disrupting the interaction between TBP and the TATA box of the p97 core promoter.


2007 ◽  
Vol 28 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Stephanie D. Bush ◽  
Patricia Richard ◽  
James L. Manley

ABSTRACT We previously showed that reduced intracellular levels of the TATA binding protein (TBP), brought about by tbp heterozygosity in DT40 cells, resulted in a mitotic delay reflecting reduced expression of the mitotic regulator cdc25B but did not significantly affect overall transcription. Here we extend these findings in several ways. We first provide evidence that the decrease in cdc25B expression reflects reduced activity of the cdc25B core promoter in the heterozygous (TBP-het) cells. Strikingly, mutations in a previously described repressor element that overlaps the TATA box restored promoter activity in TBP-het cells, supporting the idea that the sensitivity of this promoter to TBP levels reflects a competition between TBP and the repressor for DNA binding. To determine whether cells might have mechanisms to compensate for fluctuations in TBP levels, we next examined expression of the two known vertebrate TBP homologues, TLP and TBP2. Significantly, mRNAs encoding both were significantly overexpressed relative to levels observed in wild-type cells. In the case of TLP, this was shown to reflect regulation of the core promoter by both TBP and TLP. Together, our results indicate that variations in TBP levels can affect the transcription of specific promoters in distinct ways, but overall transcription may be buffered by corresponding alterations in the expression of TBP homologues.


2007 ◽  
Vol 5 (2) ◽  
pp. 44-49 ◽  
Author(s):  
Ludmila K Savinkova ◽  
Irina A Drachkova ◽  
Michail P Ponomarenko ◽  
Marina V Lysova ◽  
Tatiana V Arshinova ◽  
...  

Quantitative characteristics of interaction recombinant TATA-binding protein (TBP) with oligonucleotides identical to natural TATA-containing promoter region genes of mammals are received. In particular, new experimental data about the importance guanine in 8-th position of the TATA-element for affinity to TBP are received. The experimental data, testifying that raised maintenance G and С nucleotides in flanks of TATA-element does the contribution to affinity to TBP are received.


2000 ◽  
Vol 20 (4) ◽  
pp. 1407-1418 ◽  
Author(s):  
Tsukasa Oda ◽  
Kentaro Kayukawa ◽  
Hiroko Hagiwara ◽  
Henrik T. Yudate ◽  
Yasuhiko Masuho ◽  
...  

ABSTRACT Identification of a novel mouse nuclear protein termed activator of basal transcription 1 (mABT1) that associates with the TATA-binding protein (TBP) and enhances basal transcription activity of class II promoters is described. We also identify mABT1 homologous counterparts in Caenorhabditis elegans and Saccharomyces cerevisiae and show the homologous yeast gene to be essential for growth. The mABT1 associated with TBP in HeLa nuclear extracts and with purified mouse TBP in vitro. In addition, ectopically expressed mABT1 was coimmunoprecipitated with endogenous TBP in transfected cells. More importantly, mABT1 significantly enhanced transcription from an adenovirus major late promoter in a reconstituted cell-free system. We furthermore demonstrate that mABT1 consistently enhanced transcription from a reporter gene with a minimal core promoter as well as from reporter genes with various enhancer elements in a cotransfection assay. Taken together, these results suggest that mABT1 is a novel TBP-binding protein which can function as a basal transcription activator.


2001 ◽  
Vol 21 (5) ◽  
pp. 1737-1746 ◽  
Author(s):  
Susan M. Kraemer ◽  
Ryan T. Ranallo ◽  
Ryan C. Ogg ◽  
Laurie A. Stargell

ABSTRACT TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.


2001 ◽  
Vol 21 (11) ◽  
pp. 3652-3661 ◽  
Author(s):  
Jun Xing ◽  
Hilary M. Sheppard ◽  
Siska I. Corneillie ◽  
Xuan Liu

ABSTRACT Simian virus 40 large T antigen has been shown to inhibit p53-mediated transcription once tethered to p53-responsive promoters through interaction with p53. In this study we report that p53 stimulates transcription by enhancing the recruitment of the basal transcription factors, TFIIA and TFIID, on the promoter (the DA complex) and by inducing a conformational change in the DA complex. Significantly, we have demonstrated that T antigen inhibits p53-mediated transcription by blocking this ability of p53. We investigated the mechanism for this inhibition and found that DA complex formation was resistant to T-antigen repression when the TFIID-DNA complex was formed prior to addition of p53-T antigen complex, indicating that the T antigen, once tethered to the promoter by p53, targets TFIID. Further, we have shown that the p53-T antigen complex prevents the TATA binding protein from binding to the TATA box. Thus, these data suggest a detailed mechanism by which p53 activates transcription and by which T antigen inhibits p53-mediated transcription.


2018 ◽  
Author(s):  
Alexandre Neves ◽  
Robert N. Eisenman

AbstractThe transcriptional mechanisms that allow neural stem cells (NSC) to balance self-renewal with differentiation are not well understood. Employing an in vivo RNAi screen we identify here NSC-TAFs, a subset of nine TATA-binding protein associated factors (TAFs), as NSC identity genes in Drosophila. We found that depletion of NSC-TAFs results in decreased NSC clone size, reduced proliferation, defective cell polarity and increased hypersensitivity to cell cycle perturbation, without affecting NSC survival. Integrated gene expression and genomic binding analyses revealed that NSC-TAFs function with both TBP and TRF2, and that NSC-TAF-TBP and NSC-TAF-TRF2 shared target genes encode different subsets of transcription factors and RNA-binding proteins with established or emerging roles in NSC identity and brain development. Taken together, our results demonstrate that core promoter factors are selectively required for NSC identity in vivo by promoting cell cycle progression and NSC cell polarity as well as by restraining premature differentiation. Because pathogenic variants in a subset of TAFs have all been linked to human neurological disorders, this work may stimulate and inform future animal models of TAF-linked neurological disorders.Author summaryThe brains of many animal species are built with brain stem cells. Having too many brain stem cells can lead to brain tumors whereas too few can lead to birth defects such as microcephaly. A number of next generation sequencing studies have implicated proteins referred to as TATA-box-binding protein associated factors (TAFs) in human neurological disorders including microcephaly, but prior to this study, their function in brain development was unknown. Here we use brain stem cells, known as neural stem cells (NSCs), from the fruit fly Drosophila melanogaster as a model system to decipher how TAFs control brain stem cell identity. By combining genetics and low-input genomics, we show that TAFs directly control NSC cell division and cell polarity but do not appear to be required for NSC survival. We further show that TAFs accomplish these functions by associating either with their canonical partner TBP (TATA-binding protein) or the related protein TRF2. In summary, our study reveals unexpected and gene-selective functions of a unique subset of TAFs and their binding partners, which could inform future studies that seek to model human neurological disorders associated with TAFs.


Sign in / Sign up

Export Citation Format

Share Document