scholarly journals APPLICATION OF THE AUTOMATED CHAMBER METHOD FOR LONG-TERM GAS FLOW MEASUREMENTS IN SWAMP ECOSYSTEMS OF WESTERN SIBERIA

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Denis Konstantinovich Davydov ◽  
Alena Vladimirovna Dyachkova ◽  
Denis Valentinovich Simonenkov ◽  
Aleksandr Vladislavovich Fofonov ◽  
Shamil Shavratovich Maksutov

Будет после перевода

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 824
Author(s):  
Egor Dyukarev ◽  
Evgeny Zarov ◽  
Pavel Alekseychik ◽  
Jelmer Nijp ◽  
Nina Filippova ◽  
...  

The peatlands of the West Siberian Lowlands, comprising the largest pristine peatland area of the world, have not previously been covered by continuous measurement and monitoring programs. The response of peatlands to climate change occurs over several decades. This paper summarizes the results of peatland carbon balance studies collected over ten years at the Mukhrino field station (Mukhrino FS, MFS) operating in the Middle Taiga Zone of Western Siberia. A multiscale approach was applied for the investigations of peatland carbon cycling. Carbon dioxide fluxes at the local scale studied using the chamber method showed net accumulation with rates from 110, to 57.8 gC m−2 at the Sphagnum hollow site. Net CO2 fluxes at the pine-dwarf shrubs-Sphagnum ridge varied from negative (−32.1 gC m−2 in 2019) to positive (13.4 gC m−2 in 2017). The cumulative May-August net ecosystem exchange (NEE) from eddy-covariance (EC) measurements at the ecosystem scale was −202 gC m−2 in 2015, due to the impact of photosynthesis of pine trees which was not registered by the chamber method. The net annual accumulation of carbon in the live part of mosses was estimated at 24–190 gC m−2 depending on the Sphagnum moss species. Long-term carbon accumulation rates obtained by radiocarbon analysis ranged from 28.5 to 57.2 gC m−2 yr−1, with local extremes of up to 176.2 gC m−2 yr−1. The obtained estimates of various carbon fluxes using EC and chamber methods, the accounting for Sphagnum growth and decomposition, and long-term peat accumulation provided information about the functioning of the peatland ecosystems at different spatial and temporal scales. Multiscale carbon flux monitoring reveals useful new information for forecasting the response of northern peatland carbon cycles to climatic changes.


Neurosurgery ◽  
1985 ◽  
Vol 16 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Robert F. Spetzler ◽  
Philip L. Carter

Abstract Unclippable intracranial aneurysms are most effectively treated by hunterian ligation; however, the attendant risk of cerebral ischemia is significant. Many techniques have been used in an attempt to predict the safety of proximal vessel occlusion. Unfortunately, there is none that is risk-free and highly successful. A combination of stump pressure and cerebral blood flow measurements has been shown to be the most accurate in the acute assessment. In addition, recent studies have demonstrated that the long term risk of carotid ligation is significant. Extracranial-intracranial bypass grafting (EC-IC) has been shown to improve the safety of parent vessel ligation and is a low risk procedure. Whenever hunterian ligation is planned for the treatment of an intracranial aneurysm, EC-IC should be strongly considered. (Neurosurgery 16:111–116, 1985)


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 927 ◽  
Author(s):  
Anmona Shabnam Pranti ◽  
Daniel Loof ◽  
Sebastian Kunz ◽  
Marcus Bäumer ◽  
Walter Lang

This paper presents a long-term stable thermoelectric micro gas sensor with ligand linked Pt nanoparticles as catalyst. The sensor design gives an excellent homogeneous temperature distribution over the catalytic layer, an important factor for long-term stability. The sensor consumes very low power, 18 mW at 100 °C heater temperature. Another thermoresistive sensor is also fabricated with same material for comparative analysis. The thermoelectric sensor gives better temperature homogeneity and consumes 23% less power than thermoresistive sensor for same average temperature on the membrane. The sensor shows linear characteristics with temperature change and has significantly high Seebeck coefficient of 6.5 mV/K. The output of the sensor remains completely constant under 15,000 ppm continuous H2 gas flow for 24 h. No degradation of sensor signal for 24 h indicates no deactivation of catalytic layer over the time. The sensor is tested with 3 different amount of catalyst at 2 different operating temperatures under 6000 ppm and 15,000 ppm continuous H2 gas flow for 4 h. Sensor output is completely stable for 3 different amount of catalyst.


2020 ◽  
Vol 49 (6) ◽  
pp. 71-78
Author(s):  
О. M. Bonina ◽  
Е. А. Serbina

The results of studying the body structure of trematode cercariae of the families Opisthorchiidae and Notocotylidae and the features of their development in Western Siberia are presented. The data of long-term (1994–2019) studies on the spread of these pathogens of dangerous parasitic diseases in humans and animals are analyzed and summarized. The studies were conducted according to generally accepted methods in parasitology and hydrobiology. The species affi  liation of trematodes was determined in laboratory conditions on mature cercariae that independently left the shells of the host mollusks Bithynia tentaculata and B. troscheli. It was noted that the trematodes of the Opisthorchiidae and Notocotylidae families at the cercaria stage have the following similar features: a simple tail, pigmented eyes, and one oral sucking cup. Diagnosis of trematode cercariae of Opisthorchiidae and Notocotylidae families is possible by the following signs: the tail of the opisthorchis cercaria has a swimming membrane and is 2 times longer than the body, the tail of the notocotylid has no swimming membrane and is approximately equal in length to the body. Opisthor-chis cercariae have two pigment eyes, notocotilids – three. In the life cycle of opisthorchis, there are two intermediate hosts (bitinia and fi  sh), in the notocotylid cycle, one (bitinia). Opisthorchis cercariae have penetration glands, but notocotylids do not; the maximum daily emission of opisthorchis cercariae is ten times higher than that of notocotylids (6672 and 422 cercariae, respectively). The ability to diagnose opisthorchis and notocotilid at the cercaria stage allows the identifi cation of local foci of epidemiologically and epizootically dangerous diseases.


1970 ◽  
Vol 13 (9) ◽  
pp. 1311-1315
Author(s):  
N. M. Khusainov ◽  
A. A. Tupichenkov
Keyword(s):  
Gas Flow ◽  

2021 ◽  
Author(s):  
Robert Meier ◽  
Franz Tscheikner-Gratl ◽  
Christos Makropoulos

<p>As more and more computational power becomes available at increasingly affordable prices, the last years have seen a veritable explosion in the number of sensors and interconnected devices. This evolution is well known and often referred to as the 4th industrial revolution, or the IoT. The water sector, albeit often conservative in adopting new technologies, will profit from this continued digitalisation in various ways.</p><p>In this work we focus on the vision of covering entire sewer systems by tightly knit sensor networks which can process the generated amount of data simultaneously. Given the large number of sensors required, the only possibility to implement such a network is keeping costs as low as possible for the individual devices or use already existing sensors in multiple ways (e.g., traffic cameras helping in flood detection).</p><p>Using hardware of the Raspberry Pi ecosystem, currently retailing at less than 100$, we collected continuous video footage of an artificial open channel in a laboratory setting and used a deep neural network to extract the water level and surface velocity. The measurement accuracy of the prediction algorithm was then compared to conventional flow sensors to assess the practicality of this approach. Preliminary results in a laboratory setting indicate a sufficient prediction accuracy of the water level for engineering uses but further work is needed to verify this in a long-term field study.</p><p>After this initial stage, deploying the sensor in a real-world setting as part of the B-WaterSmart project is planned. Apart from verifying the results under real conditions, we will then be able to assess the long-term behaviour of this approach. This includes an evaluation of the maintenance effort. As the sensor is not in direct contact with the sewage, the typical need for frequent cleaning should be greatly reduced, which in turn is expected to further lower the costs.</p><p>We argue that if such a cheap sensor can ultimately be established as a viable alternative to more conventional flow sensors, the vision of sewer networks covered entirely by sensors, could become more attainable in practice.</p>


Author(s):  
Valentina Petrovna Gorbatenko ◽  
Marina Alexandrovna Volkova ◽  
Olga Vladimirovna Nosyreva ◽  
George Georgievich Zhuravlev ◽  
Irina Valerievna Kuzhevskaia

Current climate changes in Russia are attended by the increase in frequency of dangerous weather events. This chapter researches long-term variations of the dangerous weather's events on Western Siberia and to reveal general regularity, which can be associated with forest fires. The researches have been carried out for the territories of southeast of Western Siberia. The duration of the fire season increases due to climate change. This is due both to the earlier snowfall and the onset of the phenological spring, and to the increase in the duration of the thunderstorm period. Thunderstorms in Siberia are a much more frequent cause of forest fires (28%) than in other territories. Wildfire frequency is correlated with air temperature and drought anomalies.


1990 ◽  
Vol 259 (2) ◽  
pp. H543-H553
Author(s):  
R. D. Randall ◽  
B. G. Zimmerman

Rabbits were bilaterally nephrectomized for 24 h or received an angiotensin-converting enzyme (ACE) inhibitor chronically (5 days) before an acute experiment. Conductance responses to sympathetic nerve stimulation (SNS) (0.25, 0.75, and 2.25 Hz) and norepinephrine (NE) administration (0.2, 0.6, and 1.8 micrograms ia) were determined from simultaneous blood pressure and iliac blood flow measurements. Conductance responses to SNS were significantly reduced in nephrectomized (44, 26, and 20%) and chronic ACE inhibition (39, 31, and 24%) groups compared with normal controls, whereas conductance responses to NE were unchanged. Continuous infusion of angiotensin II (ANG II) for 24 h restored the depressed responses to SNS in nephrectomized and chronic ACE inhibition groups compared with normal controls but did not change conductance responses to NE. Acute ACE inhibition did not affect the conductance responses to SNS or NE compared with controls. Vascular tissue ACE activity was inhibited to a similar degree (50%) in both acute and chronic ACE inhibition groups compared with normal rabbits. Sodium depletion increased the conductance responses to SNS (30 and 24% at 0.25 and 0.75 Hz, respectively), but responses to NE were not affected. Chronic ACE inhibition significantly attenuated the conductance responses to SNS and slightly decreased responses to NE in sodium-depleted rabbits. Thus, in the anesthetized rabbit, the renin-angiotensin system potentiates the effect of SNS, presumably by ANG II acting at a prejunctional site, and this effect of ANG II appears to be long term in nature. Therefore, the renin-angiotensin system exerts a physiological role in the control of blood pressure in addition to the ability of this system to support arterial pressure in pathophysiological states.


Sign in / Sign up

Export Citation Format

Share Document