Estimation of Response Spectra of Earthquake Ground Motion Based on an Attenuation Equation with Detailed Analysis of Source and Site Effects

2017 ◽  
Vol 107 (1) ◽  
pp. 292-307
Author(s):  
Shusuke Oji ◽  
Sumio Sawada ◽  
Hiroyuki Goto
Author(s):  
Alan Poulos ◽  
Eduardo Miranda ◽  
Jack W. Baker

ABSTRACT For earthquake-resistant design purposes, ground-motion intensity is usually characterized using response spectra. The amplitude of response spectral ordinates of horizontal components varies significantly with changes in orientation. This change in intensity with orientation is commonly known as ground-motion directionality. Although this directionality has been attributed to several factors, such as topographic irregularities, near-fault effects, and local geologic heterogeneities, the mechanism behind this phenomenon is still not well understood. This work studies the directionality characteristics of earthquake ground-motion intensity using synthetic ground motions and compares their directionality to that of recorded ground motions. The two principal components of horizontal acceleration are sampled independently using a stochastic model based on finite-duration time-modulated filtered Gaussian white-noise processes. By using the same stochastic process to sample both horizontal components of motion, the variance of horizontal ground acceleration has negligible orientation dependence. However, these simulations’ response spectral ordinates present directionality levels comparable to those found in real ground motions. It is shown that the directionality of the simulated ground motions changes for each realization of the stochastic process and is a consequence of the duration being finite. Simulated ground motions also present similar directionality trends to recorded earthquake ground motions, such as the increase of average directionality with increasing period of vibration and decrease with increasing significant duration. These results suggest that most of the orientation dependence of horizontal response spectra is primarily explained by the finite significant duration of earthquake ground motion causing inherent randomness in response spectra, rather than by some physical mechanism causing polarization of shaking.


2006 ◽  
Vol 10 (sup001) ◽  
pp. 67-89 ◽  
Author(s):  
JONATHAN HANCOCK ◽  
JENNIE WATSON-LAMPREY ◽  
NORMAN A. ABRAHAMSON ◽  
JULIAN J. BOMMER∗ ◽  
ALEXANDROS MARKATIS ◽  
...  

2020 ◽  
Author(s):  
Antonio Giovanni Iaccarino ◽  
Matteo Picozzi ◽  
Dino Bindi ◽  
Daniele Spallarossa

<p>Including site specific amplification factors in ground motion prediction models represented an advance for PSHA (Atkinson 2006; Rodríguez-Marek et al. 2013; Kotha et al. 2017) that has become nowadays a standard. However, this issue has only recently received attention by the seismological community of earthquake early warning (EEW) (Spallarossa et al., 2019; Zhao and Zhao, 2019), which applications require a real-time prediction of ground motion and the delivery of alert messages to users for mitigating their exposure to seismic risk. Indeed, all EEW systems are high-technological infrastructures devoted to the real-time and automatic detection of earthquakes, rapid assessment of the associated seismic hazard for targets and the prompt delivery of alerts trough fast telecommunication networks. Among them, the on-site approaches are based on seismic networks placed near to the target, indifferently by the location of seismic threats and they issue the alert predicting the ground motion at the target from P-wave parameter. This configuration cause that On-Site EEWS are generally highly affected by site conditions.</p><p>In this work, we calibrated ground motion prediction models for on-site EEW considering acceleration response spectra (RSA) and the P-waves EEW parameters Iv2 and Pd, and we investigated the role of site-effects. We considered a dataset of nearly 60 earthquakes belonging to the Central Italy 2016-17 sequence. The high density of stations near to the sequence has allowed us to use a non-ergodic random-effect regression approach to explore and to reduce the contribution of site-effects to the uncertainty of the On-site laws predictions. We grouped the records in two ways: by stations and by EC8 classification. Then, we validated the estimated models by the Leave One Out (L1Out) technique and applied a K-means analysis to assess the performance of the EC8 classification.</p><p>The residuals analysis proved that grouping by station provides a set of relations that improves the predictions at many stations. On the contrary, L1Out cross-validation proved that the regressions retrieved grouping by EC8 classification produce higher uncertainties on the predictions than the others. Furthermore, the cross-validation proved that Iv2 is more correlated to RSA than Pd. Finally, the analysis of the random effect vs period curves confirmed that EC8 classification is unrelated to the site effect on RSA even looking only at the trend of these curves.</p><p>In conclusion, non-ergodic random-effect regression can be used also in the EEW applications to predict site-specific ground motion. EEWS that use this approach are less dependent by site-effect and able to provide more precise and reliable alerts.</p>


2021 ◽  
Author(s):  
Gaetano Falcone ◽  
Gianluca Acunzo ◽  
Amerigo Mendicelli ◽  
Federico Mori ◽  
Giuseppe Naso ◽  
...  

<p>Estimation of site effects over large areas is a key-issue for land management and emergency system planning in a risk mitigation perspective. In general, site-conditions are retrieved from available global datasets and the ground-shaking estimation is based on ground motion prediction equations.</p><p>An advanced procedure to estimate site effects over large areas is here proposed with reference to the Italian territory. Site-condition were defined for homogenous morpho-geological areas in accordance to the borehole logs and the geophysical data archived in the Italian database for seismic microzonation (https://www.webms.it/). Ground motion modifications were determined by means of about 30 milion of one-dimensional numerical simulations of local seismic site response. Correlations between amplification factors (i.e. the ratio between free-field and outcrop response spectra), AF, and site-condition (i.e. harmonic mean of the shear wave velocity in the upper 30 m of the deposit, V<sub>S30</sub>) were determined for each morpho-geological homogeneous area depending on the reference seismic intensity (i.e. referred to the outcropping stiff rock characterised by V<sub>S30</sub> ≥ 800 m/s). The AF-V<sub>S30</sub> correlations were proved to satisfactory forecast the site effects when compared with the results of site specific estimation of local seismic site response.</p>


Author(s):  
Malek Brahimi

The purpose of this study is to examine the effects of yield strength ratios and damping values on the nonlinear response of Single Degree of Freedom Systems (S.D.F.S) subjected to earthquake ground motion. A stochastic approach to constructing design response spectra and period dependent strength reduction factors for current existing nonlinear design spectra is then proposed. Non-stationary stochastic models are adopted to characterize earthquake ground motion. Twenty simulated earthquakes accelerograms are generated for each of eight historical events using Autoregressive Moving Average (ARMA) techniques. The average of nonlinear response spectra for a given Structural period from a sample of twenty records for each event are calculated to obtain the response spectra. These response spectra are used to examine the effects of structural strength factors such as the yield strength ratio and damping value, and the effects of nonlinear stiffness models including the elastoplasic model, a stiffness degrading model and a stiffness softening model.


Sign in / Sign up

Export Citation Format

Share Document