Evaluation of stratigraphic effects on seismic site response over large areas: the case study of Italy

Author(s):  
Gaetano Falcone ◽  
Gianluca Acunzo ◽  
Amerigo Mendicelli ◽  
Federico Mori ◽  
Giuseppe Naso ◽  
...  

<p>Estimation of site effects over large areas is a key-issue for land management and emergency system planning in a risk mitigation perspective. In general, site-conditions are retrieved from available global datasets and the ground-shaking estimation is based on ground motion prediction equations.</p><p>An advanced procedure to estimate site effects over large areas is here proposed with reference to the Italian territory. Site-condition were defined for homogenous morpho-geological areas in accordance to the borehole logs and the geophysical data archived in the Italian database for seismic microzonation (https://www.webms.it/). Ground motion modifications were determined by means of about 30 milion of one-dimensional numerical simulations of local seismic site response. Correlations between amplification factors (i.e. the ratio between free-field and outcrop response spectra), AF, and site-condition (i.e. harmonic mean of the shear wave velocity in the upper 30 m of the deposit, V<sub>S30</sub>) were determined for each morpho-geological homogeneous area depending on the reference seismic intensity (i.e. referred to the outcropping stiff rock characterised by V<sub>S30</sub> ≥ 800 m/s). The AF-V<sub>S30</sub> correlations were proved to satisfactory forecast the site effects when compared with the results of site specific estimation of local seismic site response.</p>

2016 ◽  
Vol 53 (9) ◽  
pp. 1363-1375 ◽  
Author(s):  
Behrang Dadfar ◽  
M. Hesham El Naggar ◽  
Miroslav Nastev

Seismic site response of discontinuous permafrost is discussed. The presence of frozen ground in soil deposits can significantly affect their dynamic response due to stiffer conditions characterized by higher shear-wave velocities compared to unfrozen soils. Both experimental and numerical investigations were conducted to examine the problem. The experimental program included a series of 1g shaking table tests on small-scale models. Nonlinear numerical analyses were performed employing FLAC software. The numerical model was verified using the obtained experimental results. Parametric simulations were then conducted using the verified model to study variations of the free-field spectral accelerations (on top of the frozen and unfrozen soil blocks) with the scheme of frozen–unfrozen soil, and to determine the key parameters and their effects on seismic site response. Results show that spectral accelerations were generally higher in frozen soils than in unfrozen ones. It was found that the shear-wave velocity of the frozen soil as well as the assumed geometry of the blocks and their spacing have a significant impact on the site response.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Francesca Bozzoni ◽  
Carlo Giovanni Lai ◽  
Laura Scandella

The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN) station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram) described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.<br />


2020 ◽  
Author(s):  
Antonio Giovanni Iaccarino ◽  
Matteo Picozzi ◽  
Dino Bindi ◽  
Daniele Spallarossa

&lt;p&gt;Including site specific amplification factors in ground motion prediction models represented an advance for PSHA (Atkinson 2006; Rodr&amp;#237;guez-Marek et al. 2013; Kotha et al. 2017) that has become nowadays a standard. However, this issue has only recently received attention by the seismological community of earthquake early warning (EEW) (Spallarossa et al., 2019; Zhao and Zhao, 2019), which applications require a real-time prediction of ground motion and the delivery of alert messages to users for mitigating their exposure to seismic risk. Indeed, all EEW systems are high-technological infrastructures devoted to the real-time and automatic detection of earthquakes, rapid assessment of the associated seismic hazard for targets and the prompt delivery of alerts trough fast telecommunication networks. Among them, the on-site approaches are based on seismic networks placed near to the target, indifferently by the location of seismic threats and they issue the alert predicting the ground motion at the target from P-wave parameter. This configuration cause that On-Site EEWS are generally highly affected by site conditions.&lt;/p&gt;&lt;p&gt;In this work, we calibrated ground motion prediction models for on-site EEW considering acceleration response spectra (RSA) and the P-waves EEW parameters Iv2 and Pd, and we investigated the role of site-effects. We considered a dataset of nearly 60 earthquakes belonging to the Central Italy 2016-17 sequence. The high density of stations near to the sequence has allowed us to use a non-ergodic random-effect regression approach to explore and to reduce the contribution of site-effects to the uncertainty of the On-site laws predictions. We grouped the records in two ways: by stations and by EC8 classification. Then, we validated the estimated models by the Leave One Out (L1Out) technique and applied a K-means analysis to assess the performance of the EC8 classification.&lt;/p&gt;&lt;p&gt;The residuals analysis proved that grouping by station provides a set of relations that improves the predictions at many stations. On the contrary, L1Out cross-validation proved that the regressions retrieved grouping by EC8 classification produce higher uncertainties on the predictions than the others. Furthermore, the cross-validation proved that Iv2 is more correlated to RSA than Pd. Finally, the analysis of the random effect vs period curves confirmed that EC8 classification is unrelated to the site effect on RSA even looking only at the trend of these curves.&lt;/p&gt;&lt;p&gt;In conclusion, non-ergodic random-effect regression can be used also in the EEW applications to predict site-specific ground motion. EEWS that use this approach are less dependent by site-effect and able to provide more precise and reliable alerts.&lt;/p&gt;


2000 ◽  
Vol 37 (1) ◽  
pp. 26-39 ◽  
Author(s):  
Jun Yang ◽  
Tadanobu Sato ◽  
Xiang-Song Li

Recently there has been an increased interest in the study of the nonlinearity in soil response for large strains through in situ earthquake observations. In this paper, the downhole array acceleration data recorded at a reclaimed island, Kobe, during the 1995 Kobe earthquake are used to study nonlinear site effects. Particular attention is given to the liquefaction-induced nonlinear effects on the recorded ground motions. By using the spectral ratio and the spectral-smoothing technique, the characteristics of the ground motions are analyzed. It is shown that the peak frequencies in spectral ratios were shifted to lower frequencies when the strongest motions occurred. The increase in the predominant period was caused primarily by a strong attenuation of low-period waves, rather than by amplification of long-period motions. Based on the spectral analyses, the nonlinearity occurring in the shallow liquefied layer during the shaking event is identified, manifested by a significant reduction of the shear modulus. A fully coupled, inelastic, finite element analysis of the response of the array site is carried out. The stress-strain histories of soils and excess pore-water pressures at different depths are calculated. It is suggested that the stress-strain response and the build up of pore pressure are well correlated to the variation of the characteristics of ground motions during the shaking history.Key words: site response, ground motion, nonlinearity, soil liquefaction, array records, Kobe earthquake.


2009 ◽  
Vol 25 (2) ◽  
pp. 301-322 ◽  
Author(s):  
Tadahiro Kishida ◽  
Ross W. Boulanger ◽  
Norman A. Abrahamson ◽  
Michael W. Driller ◽  
Timothy M. Wehling

Seismic site response and site effects models are presented for levees in the Sacramento-San Joaquin Delta where the subsurface soils include thick deposits of highly organic soils. Sources of uncertainty that contribute to the variation of seismic wave amplification are investigated, including variations in the input ground motions, soil profiles, and dynamic soil properties through Monte Carlo simulations of equivalent-linear site response analyses. Regression models for seismic wave amplification for levees in the Delta are presented that range from a function of peak outcrop acceleration alone to a vector of response spectra ordinates and soil profile parameters. The site effects models were incorporated into a probabilistic seismic hazard analysis for a representative location, and the relative impacts of the various models on the computed hazard are evaluated.


2020 ◽  
Author(s):  
gaetano falcone ◽  
giuseppe naso ◽  
stefania fabozzi ◽  
federico mori ◽  
massimiliano moscatelli ◽  
...  

&lt;p&gt;When an earthquake occurs, the propagation of the seismic waves is conditioned by local conditions, e.g., depth to seismic bedrock and impedance ratio between soft soil and seismic bedrock. Bearing in mind that the maximum depth of site prospections generally does not extend up to seismic bedrock depth, a parametric study was carried out with reference to ideal case studies in order to investigate the effect on local seismic amplification of the depth to bedrock.&lt;/p&gt;&lt;p&gt;The results are presented in terms of charts of amplification factors (i.e., ratio of integral quantities referred to free-field and reference response spectra) and minimum depth to investigate vs building type. These charts will allow defining the thickness of the cover deposit that should be characterised in terms of geophysical and geotechnical parameters in order to perform seismic site response analysis according to a precautionary approach, in areas where depth to seismic bedrock is higher than conventional maximum depth of site surveys.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document