Site Response, Basin Amplification, and Earthquake Stress Drops in the Portland, Oregon Area

Author(s):  
Arthur Frankel ◽  
Alex Grant

ABSTRACT Site response, sedimentary basin amplification, and earthquake stress drops for the Portland, Oregon area were determined using accelerometer recordings at 16 sites of 10 local earthquakes with MD 2.6–4.0. A nonlinear inversion was applied to calculate site response (0.5–10 Hz), corner frequencies, and seismic moments from the Fourier spectra of the earthquakes. Site amplifications at lower frequencies of 0.1–2.0 Hz were determined from Fourier spectra of four regional earthquakes with Mw 5.8–6.4. Amplifications were calculated relative to a stiff-soil site outside the Portland and Tualatin basins. Sites on artificial fill and Holocene alluvium show strong amplification peaks (factor of 5) around 1–2 Hz. Sites on the Portland Hills, consisting of thin soil over basalt, display spectral peaks at 4–5 Hz (factor of 4). Spectral peaks at both sites are similar to those predicted for vertically propagating S waves from VS profiles determined at these sites using a borehole and refraction microtremor analysis. The largest amplifications at 0.1–1 Hz were found at stiff-soil sites in the Tualatin basin, based on recordings of regional earthquakes. Amplifications of a factor of 10, at about 0.3 Hz, were observed for a site in the deeper portion of the Tualatin basin and a factor of 7 at 0.5–0.6 Hz for two adjacent sites closer to the border of that basin. Stiff-soil sites in the Portland basin exhibit amplifications of 2–3 at frequencies of about 0.3–0.8 Hz. The frequencies of the amplification peaks for the deep Tualatin basin site can be explained by S-wave resonance in the shallow sediments, but the observed amplification is underestimated. Earthquake stress drops determined from the inversion range from 3 to 11 MPa, with no overall dependence on seismic moment.

2020 ◽  
Vol 221 (2) ◽  
pp. 1029-1042 ◽  
Author(s):  
Hiroo Kanamori ◽  
Zachary E Ross ◽  
Luis Rivera

SUMMARY We use KiK-net (NIED) downhole records to estimate the radiated energy, ER, of 29 Japanese inland earthquakes with a magnitude range from Mw = 5.6 to 7.0. The method is based on the work of Gutenberg and Richter in which the time integral of S-wave ground-motion velocity-squared is measured as a basic metric of the radiated energy. Only stations within a distance of 100 km are used to minimize complex path and attenuation effects. Unlike the teleseismic method that uses mainly P waves, the use of S waves which carry more than 95 per cent of the radiated energy allows us to obtain robust results. We calibrate the method using synthetic seismograms to modernize and improve the Gutenberg–Richter method. We compute synthetic seismograms for a source model of each event with a given source function (i.e. known ER), the actual mechanism and the source-station geometry. Then, we compare the given ER with the computed energy metric to correct for the unknown effect of wave propagation and the mechanism. The use of downhole records minimizes the uncertainty resulting from the site response. Our results suggest that the currently available estimates of ER from teleseismic data are probably within a factor of 3, on average, of the absolute value. The scaled energy eR ( = ER/M0) is nearly constant at about 3 × 10−5 over a magnitude range from Mw = 5.6 to 7.0 with a slight increasing trend with Mw. We found no significant difference in eR between dip-slip and strike-slip events.


1983 ◽  
Vol 73 (6A) ◽  
pp. 1735-1751
Author(s):  
J. B. Fletcher ◽  
J. Boatwright ◽  
W. B. Joyner

Abstract Three estimates of stress differences, which include Brune stress drop, stress drop from rms of acceleration (arms), and the apparent stress, have been determined for 13 earthquakes at Monticello, South Carolina, a site of reservoir-induced seismicity. Data for nine of the events come from digitally recorded three-component seismograms at four or five stations that were deployed around the Monticello Reservoir in May and early June 1979. The data from the other four events come from a strong-motion accelerograph located on the dam abutment at the southwest end of the reservoir. Estimates of the seismic moment (Mo) range from 4.6 × 1017 to 3.4 × 1020 dyne-cm (S waves) and radiated energy from about 1011 to 3 × 1016 dyne-cm (S waves). Brune stress drops ranged from 0.5 bars to about 90 bars and show a strong dependence on depth (focal depths range from 0.07 to 1.4 km) and a moderate dependence on Mo. Arms stress drops from the direct S-wave span a similar range of values and also exhibit a strong dependence on depth. Apparent stresses are usually lower than the other estimates of stress differences by a factor of 2 to 4. Seismic stress differences are highest in the topmost 0.2 to 0.3 km, a depth range for which the in situ measurements of stress and pore pressure suggest that the rock is in a state of incipient failure. In this depth range, where the four largest events occurred, the stress drops are of the same order as the ambient shear stress. These data suggest that at Monticello, where pore fluids have a strong influence on the failure process, the largest stresses released seismically are in regions most conducive to failure and that the seismic efficiencies for events at Monticello are larger than have been reported for other tremors in different tectonic settings.


1992 ◽  
Vol 82 (2) ◽  
pp. 642-659 ◽  
Author(s):  
Carlos Gutierrez ◽  
Shri Krishna Singh

Abstract The city of Acapulco is located near or above the mature seismic gap of Guerrero along the Mexican subduction zone. With the purpose of studying the character of strong ground motion on soft sites, four digital accelerographs have been installed in the city on such sites. These instruments have been in operation since 1988. Two additional instruments, part of the Guerrero Accelerograph Array, are located on hard sites in the area. One of these, VNTA, has been in operation since 1985 and the other, ACAN, since 1989. These stations have recorded several earthquakes. We use data from eight events (4.2 ≤ M ≤ 6.9) to study spectral amplification of seismic waves at the soft sites with respect to VNTA. The S waves are amplified by a factor of 6 to 25 at the soft sites in a fairly broad range of frequencies; both the amplification and the frequency band over which it occurs depend upon the site. Although the largest earthquake in our data set (M = 6.9) gave rise to a peak horizontal acceleration exceeding 0.3 g at one of the soft sites, no clear evidence of nonlinear behavior of the subsoil is found. Spectral amplifications of S-wave coda are very similar to those of S waves. We also measured microtremors at the strong-motion sites. The microtremor spectra were interpreted, using reasonable assumptions, to test the feasibility of this technique in reproducing the spectral amplifications observed during earthquakes. Our results show that only a rough estimate of site response can be obtained from this technique, at least in Acapulco; caution is warranted in its use elsewhere.


1990 ◽  
Vol 80 (6A) ◽  
pp. 1504-1532
Author(s):  
Paul Spudich ◽  
David P. Miller

Abstract We address the following two questions. Can a microearthquake's ground motions be modeled by incident P and S waves that excite a site transfer-function that is a smooth function of incidence angle? Given recorded ground motions from a set of earthquakes having known locations and mechanisms, can we derive such a site transfer-function and use it to obtain the ground motions that would result from an earthquake source occurring somewhere in the same volume but having a location and mechanism that are different from the recorded events? Although many factors will cause two distinct microearthquake sources to have different seismograms at a common station, in this paper we concentrate only upon the differences caused by source mechanisms, P- and S-wave travel-time variations and by variations in the site transfer-function. We specifically exclude the effects of waves scattered from heterogeneities in the geologic structure away from the seismic site. We express the site transfer-function as a sum of several terms having simple dependences upon incidence angle and azimuth. Each term is an independent function of time. Given a set of seismograms observed at the site, we solve a linear system of equations for the time dependences of each term. These time series may be used to calculate the seismograms that would have resulted from an earthquake having arbitrary mechanism and location. This step is an interpolation. We have applied this technique to seismograms after aftershocks of the 1986 North Palm Springs earthquake. Our interpolation technique works fairly well within the volume occupied by the recorded events, but the method is not very successful at providing accurate seismograms for sources located outside the aftershock volume. The primary causes of the inaccuracy are the inadequacy of our chosen angular functions to model the site response fully and the likely scattering of seismic waves by geological heterogeneities (in this case, the Banning and Mission Creek faults) near the seismic stations. Our methods could be used to determine the effects of single scattering from lateral heterogeneities in geologic structure.


Author(s):  
Carlos Mendoza ◽  
Stephen Hartzell

ABSTRACT We invert the shear‐wave displacement spectra obtained from 30 three‐component, broadband waveforms recorded within 300 km of the 6 November 2011 Mw 5.7 Prague, Oklahoma, earthquake to recover the site‐response contribution using an inversion method that simultaneously inverts for source, path, and site effects. Site‐response functions identify resonant frequencies within a range of 0.1–10 Hz that generally coincide with spectral peaks in horizontal‐to‐vertical ratio curves derived from the recorded waveforms. S‐wave velocity profiles available for several sites were also used to calculate theoretical SH transfer functions that predict the site amplification due to the near‐surface soil structure down to depths of 30–50 m. The transfer functions do not provide resonance information below about 5–8 Hz, indicating that the spectral peaks in the site response obtained from the waveform analysis result from deeper velocity variations. A 0.3 Hz spectral peak observed at several stations, for example, coincides with the strong, surface‐wave amplitudes observed at 3 s periods for induced M≥3 earthquakes in Oklahoma and Kansas, suggesting that this resonant peak may be due to surface waves trapped in the upper ∼2  km sedimentary layer of the crust. Both shallow and deep contributions to the site response are important for the characterization of ground motion from central and eastern North America (CENA) earthquakes. We obtain a corner frequency of 0.229, consistent with independent observations of the size of the event. A frequency‐dependent attenuation relation of Q(f)=1107f0.398 consistent with prior CENA path measurements is also derived.


1996 ◽  
Vol 86 (3) ◽  
pp. 627-635 ◽  
Author(s):  
Linda C. Seekins ◽  
Leif Wennerberg ◽  
Lucia Margheriti ◽  
Hsi-Ping Liu

Abstract We compare microtremor data to weak-motion S-wave and coda recordings at sites in San Francisco in order to clarify the range of applicability of microtremor data to ground-motion prediction. We also compare S-wave results to coda results. For each type of data, we compute spectral ratios of motions from two soil/rock station pairs and from an uphole/downhole pair in the Marina district. We compute horizontal/vertical ratios (Nakamura's method) at a soil site, a rock site, and the surface and borehole instruments. In the station-pair analyses, microtremor data show amplifications at the same fundamental frequency as S waves, but the frequencies of other peaks do not agree. The amplification at frequencies higher than 2 Hz is greater in the microtremor data. Station-pair ratios of coda data generally show spectral peaks occurring at the same frequencies, but with levels varying from one to four times the amplification from S-wave ratios. Nakamura's method of analyzing microtremors agrees better with S-wave station-pair results than the microtremor station-pair method over a limited frequency band that varies from station to station.


1997 ◽  
Vol 87 (3) ◽  
pp. 710-730 ◽  
Author(s):  
Luis Fabián Bonilla ◽  
Jamison H. Steidl ◽  
Grant T. Lindley ◽  
Alexei G. Tumarkin ◽  
Ralph J. Archuleta

Abstract During the months that followed the 17 January 1994 M 6.7 Northridge, California, earthquake, portable digital seismic stations were deployed in the San Fernando basin to record aftershock data and estimate site-amplification factors. This study analyzes data, recorded on 31 three-component stations, from 38 aftershocks ranging from M 3.0 to M 5.1, and depths from 0.2 to 19 km. Site responses from the 31 stations are estimated from coda waves, S waves, and ratios of horizontal to vertical (H/V) recordings. For the coda and the S waves, site response is estimated using both direct spectral ratios and a generalized inversion scheme. Results from the inversions indicate that the effect of Qs can be significant, especially at high frequencies. Site amplifications estimated from the coda of the vertical and horizontal components can be significantly different from each other, depending on the choice of the reference site. The difference is reduced when an average of six rock sites is used as a reference site. In addition, when using this multi-reference site, the coda amplification from rock sites is usually within a factor of 2 of the amplification determined from the direct spectral ratios and the inversion of the S waves. However, for nonrock sites, the coda amplification can be larger by a factor of 2 or more when compared with the amplification estimated from the direct spectral ratios and the inversion of the S waves. The H/V method for estimating site response is found to extract the same predominant peaks as the direct spectral ratio and the inversion methods. The amplifications determined from the H/V method are, however, different from the amplifications determined from the other methods. Finally, the stations were grouped into classes based on two different classifications, general geology and a more detailed classification using a quaternary geology map for the Los Angeles and San Fernando areas. Average site-response estimates using the site characterization based on the detailed geology show better correlation between amplification and surface geology than the general geology classification.


1998 ◽  
Vol 88 (1) ◽  
pp. 30-42
Author(s):  
Fabien Coutel ◽  
Peter Mora

Abstract Recent earthquakes have triggered renewed interest to understand better earthquake site response. Most of the studies comparing various techniques for estimating site response were based on real data (from earthquakes, nuclear blasts, and seismic noise). A theoretical approach, using synthetic data generated with the pseudospectral method, is used to compare four site-response estimation techniques. The limits of applicability of each method were determined by modeling microtremors and incoming SV waves (with different incidence angles) and analyzing the site amplifications. The first two techniques investigated consist of dividing the spectrum of the horizontal motion at a site by that of a reference site using either incident S waves or microtremors. The latter was unable to reveal either the resonant frequencies or peak amplitudes in any cases. The two other techniques are based on the horizontal-to-vertical (H/V) spectral ratio using S waves or microtremors. These techniques were found to reveal at least the fundamental resonant frequency and amplitude (former method only) within 10% error, in the case of simple geology (flat layers). However, the results show that these techniques are unable to take into account 2D effects such as focusing effects and basin-edge effects and yield unreliable or incorrect results in such cases.


Author(s):  
Hao Wang ◽  
Ning Li ◽  
Caizhi Wang ◽  
Hongliang Wu ◽  
Peng Liu ◽  
...  

Abstract In the process of dipole-source acoustic far-detection logging, the azimuth of the fracture outside the borehole can be determined with the assumption that the SH–SH wave is stronger than the SV–SV wave. However, in slow formations, the considerable borehole modulation highly complicates the dipole-source radiation of SH and SV waves. A 3D finite-difference time-domain method is used to investigate the responses of the dipole-source reflected shear wave (S–S) in slow formations and explain the relationships between the azimuth characteristics of the S–S wave and the source–receiver offset and the dip angle of the fracture outside the borehole. Results indicate that the SH–SH and SV–SV waves cannot be effectively distinguished by amplitude at some offset ranges under low- and high-fracture dip angle conditions, and the offset ranges are related to formation properties and fracture dip angle. In these cases, the fracture azimuth determined by the amplitude of the S–S wave not only has a $180^\circ $ uncertainty but may also have a $90^\circ $ difference from the actual value. Under these situations, the P–P, S–P and S–S waves can be combined to solve the problem of the $90^\circ $ difference in the azimuth determination of fractures outside the borehole, especially for a low-dip-angle fracture.


Sign in / Sign up

Export Citation Format

Share Document