NESS2.0: An Updated Version of the Worldwide Dataset for Calibrating and Adjusting Ground-Motion Models in Near Source

Author(s):  
Sara Sgobba ◽  
Chiara Felicetta ◽  
Giovanni Lanzano ◽  
Fadel Ramadan ◽  
Maria D’Amico ◽  
...  

ABSTRACT We present an extended and updated version of the worldwide NEar-Source Strong-motion (NESS) flat file, which includes an increased number of moderate-to-strong earthquakes recorded in epicentral area, new source metadata and intensity measures, comprising spectral displacements and fling-step amplitudes retrieved from the extended baseline correction processing of velocity time series. The resulting dataset consists of 81 events with moment magnitude≥5.5 and hypocentral depth shallower than 40 km, corresponding to 1189 three-component waveforms, which are selected to have a maximum source-to-site distance within one fault length. Details on the flat files, metadata, and ground-motion parameters, processing scheme, and statistical findings are presented and discussed. The analysis of these data allows recognizing the presence of distinctive features (such as pulse-like waveforms, large vertical components, and hanging-wall effects) that can be exploited to assess their impact on near-source seismic motion. As an example, we use the NESS2.0 dataset for calibrating an empirical correction factor of a regional ground-motion model (GMM) mainly based on far-field records. In this way, we can adjust the median predictions to account for near-source effects not fully captured by the reference model. The final goal of this work is to promote the use of the NESS2 flat file as a tool to disseminate qualified and referenced near-source data and metadata in the light of improving the constraints of GMMs (both empirical and physics-based) close to the source.

2020 ◽  
Author(s):  
Chih Hsuan Sung ◽  
Norman Abrahamson ◽  
Jyun Yan Huang

<p>A conditional ground-motion model (GMM) is developed for peak ground displacement (PGD)for Taiwan. The conditional GMM includes the observed pseudo-spectral acceleration (PSA(T)) as an input parameter in addition to magnitude and distance. The conditional PGD model can be combined with the traditional GMMs for PSA values to develop a GMM for PGD without the dependence on PSA. The main advantages of the conditional model approach are that it can be quickly developed, is easily understandable, can fully capture the magnitude, distance, and site scaling of the secondary parameters that are compatible with the design response spectral values, and also has much smaller aleatory variability than traditional GMMs. In this study, we use part of the database of Taiwan SSHAC Level 3 project (13691 strong-motion records from 158 crustal events occurred between 1992 and 2018 with 4.5 ≤ Mw ≤ 7.65) to develop a new conditional scaling model for horizontal PGD consisted from the suite period of the PSA, rupture distance and moment magnitude. Furthermore, we combine this conditional model with each of two SSHAC Level 3 models and NGA-West2 ground-motion models for PSA(T) to derived new GMMs for the median and standard deviation of PGD. The results show that the new PGD GMMs include the more complex ground-motion scaling which capture from the GMMs of PSA, such as hanging-wall effects, sediment-depth effects, soil nonlinearity effects, and regionalization effects.</p>


2021 ◽  
pp. 875529302110552
Author(s):  
Silvia Mazzoni ◽  
Tadahiro Kishida ◽  
Jonathan P Stewart ◽  
Victor Contreras ◽  
Robert B Darragh ◽  
...  

The Next-Generation Attenuation for subduction zone regions project (NGA-Sub) has developed data resources and ground motion models for global subduction zone regions. Here we describe the NGA-Sub database. To optimize the efficiency of data storage, access, and updating, data resources for the NGA-Sub project are organized into a relational database consisting of 20 tables containing data, metadata, and computed quantities (e.g. intensity measures, distances). A database schema relates fields in tables to each other through a series of primary and foreign keys. Model developers and other users mostly interact with the data through a flatfile generated as a time-stamped output of the database. We describe the structure of the relational database, the ground motions compiled for the project, and the means by which the data can be accessed. The database contains 71,340 three-component records from 1880 earthquakes from seven global subduction zone regions: Alaska, Central America and Mexico, Cascadia, Japan, New Zealand, South America, and Taiwan. These data were processed on a component-specific basis to minimize noise effects in the data and remove baseline drifts. Provided ground motion intensity measures include peak acceleration, peak velocity, and 5%-damped pseudo-spectral accelerations for a range of oscillator periods.


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Sara Sgobba ◽  
Giovanni Lanzano ◽  
Francesca Pacor ◽  
Chiara Felicetta

Near-source effects can amplify seismic ground motion, causing large demand to structures and thus their identification and characterization is fundamental for engineering applications. Among the most relevant features, forward-directivity effects may generate near-fault records characterized by a large velocity pulse and unusual response spectral shape amplified in a narrow frequency-band. In this paper, we explore the main statistical features of acceleration and displacement response spectra of a suite of 230 pulse-like signals (impulsive waveforms) contained in the NESS1 (NEar Source Strong-motion) flat-file. These collected pulse-like signals are analyzed in terms of pulse period and pulse azimuthal orientation. We highlight the most relevant differences of the pulse-like spectra compared to the ordinary (i.e., no-pulse) ones, and quantify the contribution of the pulse through a corrective factor of the spectral ordinates. Results show that the proposed empirical factors are able to capture the amplification effect induced by near-fault directivity, and thus they could be usefully included in the framework of probabilistic seismic hazard analysis to adjust ground-motion model (GMM) predictions.


Author(s):  
Fabio Sabetta ◽  
Antonio Pugliese ◽  
Gabriele Fiorentino ◽  
Giovanni Lanzano ◽  
Lucia Luzi

AbstractThis work presents an up-to-date model for the simulation of non-stationary ground motions, including several novelties compared to the original study of Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996). The selection of the input motion in the framework of earthquake engineering has become progressively more important with the growing use of nonlinear dynamic analyses. Regardless of the increasing availability of large strong motion databases, ground motion records are not always available for a given earthquake scenario and site condition, requiring the adoption of simulated time series. Among the different techniques for the generation of ground motion records, we focused on the methods based on stochastic simulations, considering the time- frequency decomposition of the seismic ground motion. We updated the non-stationary stochastic model initially developed in Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996) and later modified by Pousse et al. (Bull Seism Soc Am 96:2103–2117, 2006) and Laurendeau et al. (Nonstationary stochastic simulation of strong ground-motion time histories: application to the Japanese database. 15 WCEE Lisbon, 2012). The model is based on the S-transform that implicitly considers both the amplitude and frequency modulation. The four model parameters required for the simulation are: Arias intensity, significant duration, central frequency, and frequency bandwidth. They were obtained from an empirical ground motion model calibrated using the accelerometric records included in the updated Italian strong-motion database ITACA. The simulated accelerograms show a good match with the ground motion model prediction of several amplitude and frequency measures, such as Arias intensity, peak acceleration, peak velocity, Fourier spectra, and response spectra.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 186
Author(s):  
Alessandro Todrani ◽  
Giovanna Cultrera

On 24 August 2016, a Mw 6.0 earthquake started a damaging seismic sequence in central Italy. The historical center of Amatrice village reached the XI degree (MCS scale) but the high vulnerability alone could not explain the heavy damage. Unfortunately, at the time of the earthquake only AMT station, 200 m away from the downtown, recorded the mainshock, whereas tens of temporary stations were installed afterwards. We propose a method to simulate the ground motion affecting Amatrice, using the FFT amplitude recorded at AMT, which has been modified by the standard spectral ratio (SSR) computed at 14 seismic stations in downtown. We tested the procedure by comparing simulations and recordings of two later mainshocks (Mw 5.9 and Mw 6.5), underlining advantages and limits of the technique. The strong motion variability of simulations was related to the proximity of the seismic source, accounted for by the ground motion at AMT, and to the peculiar site effects, described by the transfer function at the sites. The largest amplification characterized the stations close to the NE hill edge and produced simulated values of intensity measures clearly above one standard deviation of the GMM expected for Italy, up to 1.6 g for PGA.


Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


2015 ◽  
Vol 31 (3) ◽  
pp. 1629-1645 ◽  
Author(s):  
Ronnie Kamai ◽  
Norman Abrahamson

We evaluate how much of the fling effect is removed from the NGA database and accompanying GMPEs due to standard strong motion processing. The analysis uses a large set of finite-fault simulations, processed with four different high-pass filter corners, representing the distribution within the PEER ground motion database. The effects of processing on the average horizontal component, the vertical component, and peak ground motion values are evaluated by taking the ratio between unprocessed and processed values. The results show that PGA, PGV, and other spectral values are not significantly affected by processing, partly thanks to the maximum period constraint used when developing the NGA GMPEs, but that the bias in peak ground displacement should not be ignored.


Author(s):  
Paul Somerville

This paper reviews concepts and trends in seismic hazard characterization that have emerged in the past decade, and identifies trends and concepts that are anticipated during the coming decade. New methods have been developed for characterizing potential earthquake sources that use geological and geodetic data in conjunction with historical seismicity data. Scaling relationships among earthquake source parameters have been developed to provide a more detailed representation of the earthquake source for ground motion prediction. Improved empirical ground motion models have been derived from a strong motion data set that has grown markedly over the past decade. However, these empirical models have a large degree of uncertainty because the magnitude - distance - soil category parameterization of these models often oversimplifies reality. This reflects the fact that other conditions that are known to have an important influence on strong ground motions, such as near- fault rupture directivity effects, crustal waveguide effects, and basin response effects, are not treated as parameters of these simple models. Numerical ground motion models based on seismological theory that include these additional effects have been developed and extensively validated against recorded ground motions, and used to estimate the ground motions of past earthquakes and predict the ground motions of future scenario earthquakes. The probabilistic approach to characterizing the ground motion that a given site will experience in the future is very compatible with current trends in earthquake engineering and the development of building codes. Performance based design requires a more comprehensive representation of ground motions than has conventionally been used. Ground motions estimates are needed at multiple annual probability levels, and may need to be specified not only by response spectra but also by suites of strong motion time histories for input into time-domain non-linear analyses of structures.


Author(s):  
Zach Bullock

This study proposes empirical ground motion models for a variety of non-spectral intensity measures and significant durations in New Zealand. Equations are presented for the prediction of the median and maximum rotated components of Arias intensity, cumulative absolute velocity, cumulative absolute velocity above a 5 cm/s2 acceleration threshold, peak incremental ground velocity, and the 5% to 75% and 5% to 95% significant durations. Recent research has highlighted the usefulness of these parameters in both structural and geotechnical engineering. The New Zealand Strong Motion Database provides the database for regression and includes many earthquakes from all regions of New Zealand with the exceptions of Auckland and Northland, Otago and Southland, and Taranaki. The functional forms for the proposed models are selected using cross validation. The possible influence of effects not typically included in ground motion models for these intensity measures is considered, such as hanging wall effects and basin depth effects, as well as altered attenuation in the Taupo Volcanic Zone. The selected functional forms include magnitude and rupture depth scaling, attenuation with distance, and shallow site effects. Finally, the spatial autocorrelation of the models’ within-event residuals is considered and recommendations are made for developing correlated maps of intensity predictions stochastically.


2021 ◽  
Author(s):  
Olga-Joan Ktenidou ◽  
Faidra Gkika ◽  
Erion-Vasilis Pikoulis ◽  
Christos Evangelidis

<p>Although it is nowadays desirable and even typical to characterise site conditions in detail at modern recording stations, this is not yet a general rule in Greece, due to the large number and geographical dispersion of stations. Indeed, most of them are still characterised merely through geological descriptions or proxy-based parameters, rather than through in-situ measurements. Considering: 1. the progress made in recent years with sophisticated ground motion models and the need to define region-specific rock conditions based on data, 2. the move towards large open-access strong-motion databases that require detailed site metadata, and 3. that Greek-provenance recordings represent a significant portion of European seismic data, there are many reasons to improve our understanding of site response at these stations. Moreover, it has been shown recently in several regions that even sites considered as rock can exhibit amplification and ground motion variability, which has given rise to more scientific research into the definition of reference sites. For Greece, in-situ-characterisation campaigns for the entire network would impose unattainable time/budget constraints; so, instead, we implement alternative empirical approaches using the recordings themselves, such as the horizontal-to-vertical spectral ratio technique and its variability. We present examples of 'well-behaved', typical rock sites, and others whose response diverges from what is assumed for their class.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document