scholarly journals Time-domain determination of earthquake fault parameters from short-period P-waves

1976 ◽  
Vol 66 (5) ◽  
pp. 1459-1484
Author(s):  
Paul G. Somerville ◽  
Ralph A. Wiggins ◽  
Robert M. Ellis

abstract Source parameters of two shallow earthquakes have been determined by the time-domain analysis of short-period teleseismic recordings. For each event, the effect of the receiver crust was deconvolved from a set of globally distributed recordings using the homomorphic method. The resulting seismograms were compared with the form of the elastic-wave radiation computed from Savage's model of radially spreading rupture on a plane elliptical fault surface. This time-domain approach has permitted the determination of several kinematic parameters pertaining to the dynamics of rupture that are not ordinarily evaluated from spectral analysis. These parameters are rupture velocity, the direction of farthest rupture propagation, and the duration of a ramp dislocation time function which was prescribed to be the same everywhere on the fault surface. The application of a general linear inverse scheme has shown that the model parameters (notably rupture velocity and dimension) are only weakly coupled. Inversion is also used to determine the range of acceptable parameter values and indicates the importance of array recordings in constraining the models. A consistent discrepancy between the observed and model seismograms during the first half-cycle of motion is attributed to the incorrect prescription of the dislocation time function. It is suggested that a space-dependent function determined theoretically by Kostrov in 1964 would tend to remove this discrepancy.

2021 ◽  
Vol 2 (1) ◽  
pp. 01-05
Author(s):  
YASSINE CHAHBOUB ◽  
SZAVAI Szabolcs

The Gurson – Tvergaard – Needleman (GTN) mechanical model is widely used to predict the failure of materials based on laboratory specimens, direct identification of Gurson – Tvergaard – Needleman parameters is not easy and time-consuming, and the most used method to determine them is the combination between the experimental results and those of the finite elements, the process consists of repeating the simulations several times until the simulation data matches the experimental data obtained at the specimen level.This article aims to find GTN parameters for the Compact Tension (CT) and Single Edge Tensile Test (SENT) specimen based on the Notch Specimen (NT) using the Artificial Neural Network (ANN) approach. . This work presents how the ANN could help us determine the parameters of GTN in a very short period of time. The results obtained show that ANN is an excellent tool for determining GTN parameters.


1964 ◽  
Vol 54 (6A) ◽  
pp. 1811-1841 ◽  
Author(s):  
N. A. Haskell

abstract Starting with a Green's function representation of the solution of the elastic field equations for the case of a prescribed displacement discontinuity on a fault surface, it is shown that a shear fault (relative displacement parallel to the fault plane) is rigorously equivalent to a distribution of double-couple point sources over the fault plane. In the case of a tensile fault (relative displacement normal to the fault plane) the equivalent point source distribution is composed of force dipoles normal to the fault plane with a superimposed purely compressional component. Assuming that the fault break propagates in one direction along the long axis of the fault plane and that the relative displacement at a given point has the form of a ramp time function of finite duration, T, the total radiated P and S wave energies and the total energy spectral densities are evaluated in closed form in terms of the fault plane dimensions, final fault displacement, the time constant T, and the fault propagation velocity. Using fault parameters derived principally from the work of Ben-Menahem and Toksöz on the Kamchatka earthquake of November 4, 1952, the calculated total energy appears to be somewhat low and the calculated energy spectrum appears to be deficient at short periods. It is suggested that these discrepancies are due to over-simplification of the assumed model, and that they may be corrected by (1) assuming a somewhat roughened ramp for the fault displacement time function to correspond to a stick-slip type of motion, and (2) assuming that the short period components of the fault displacement wave are coherent only over distances considerably smaller than the total fault length.


1997 ◽  
Vol 62 (10) ◽  
pp. 1511-1526
Author(s):  
María-Luisa Alcaraz ◽  
Ángela Molina

A theoretical study of the potential-time response to sinusoidal current applied to static and dynamic electrodes for regeneration processes is presented. Methods for determination of the regeneration fraction, rate constant of the chemical reaction and heterogeneous kinetic parameters are proposed.


2005 ◽  
Vol 43 (sup1) ◽  
pp. 253-266 ◽  
Author(s):  
J. A. Cabrera ◽  
A. Ortiz ◽  
E. Carabias ◽  
A. Simón

Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


Sign in / Sign up

Export Citation Format

Share Document