Magnitude-dependent variance of peak ground acceleration

1995 ◽  
Vol 85 (4) ◽  
pp. 1161-1176
Author(s):  
R. R. Youngs ◽  
N. Abrahamson ◽  
F. I. Makdisi ◽  
K. Sadigh

Abstract We examine the variability of peak horizontal and vertical accelerations of the large California strong-motion data set for the time period 1957 to 1991 and find a statistically significant dependence of the standard error on earthquake magnitude. Specifically, the standard error decreases with increasing magnitude. The analysis was conducted using a rigorous methodology that examines both earthquake to earthquake (inter-event) variability and within earthquake (intra-event) variability. The magnitude dependence is stronger for inter-event variability than intra-event variability, and stronger for horizontal peak acceleration than for vertical peak acceleration. The data from the recent Landers, Big Bear, and Northridge earthquakes are consistent with these results.

1988 ◽  
Vol 4 (1) ◽  
pp. 75-100 ◽  
Author(s):  
A. Shakal ◽  
M. J. Huang ◽  
T. Q. Cao

The Whittier Narrows earthquake of October 1, 1987 generated the largest set of strong-motion records ever obtained from a single earthquake. The California Strong Motion Instrumentation Program (CSMIP) recovered 128 strong-motion records from 101 stations. Of these 101 stations, 63 are ground-response stations and 38 are extensively-instrumented structures. The structures include 27 buildings, eight dams, a suspension bridge, an airport tower, and a power plant. This paper summarizes that data set and highlights records of particular interest. The duration of strong shaking was approximately 3 to 4 seconds at most stations. The maximum peak acceleration values in the CSMIP data set are 0.62 g on the ground and 0.54 g in a structure. The largest acceleration (0.62 g) was recorded at a station near Tarzana, approximately 45 km from the epicenter. Other records of particular interest discussed here include the record from a soft-story building on the Los Angeles State University campus and the records from the Vincent Thomas suspension bridge near Long Beach. Digitization and processing of the accelerograms are underway, and accelerograms from 12 ground-response stations have been digitized as of this writing. The spectra show that the motion at the Tarzana station was dominated by 3 Hz energy. Spectra from other sites are relatively flat and do not show this spectral peak. The attenuation of peak acceleration with distance for this earthquake is compared with the relationship of Joyner and Boore (1981) derived from past earthquakes. On average, the peak acceleration data from this earthquake are higher than would be predicted by the Joyner-Boore model.


2012 ◽  
Vol 28 (1) ◽  
pp. 77-103 ◽  
Author(s):  
Sudhir K. Jain ◽  
A. D. Roshan ◽  
Siddharth Yadav ◽  
Sonam Srivastava ◽  
Prabir C. Basu

In the 1960s several hundred structural response recorders (SRR) were installed all over India. An SRR is a simple instrument consisting of six seismoscopes that provide “maximum response” during an earthquake, without providing the time history. In the past earthquakes, these SRRs have provided several hundred records but they have not been effectively utilized for hazard studies because the measurements from these instruments are considered crude. This paper compares the data obtained from SRRs with that from more modern strong-motion accelerographs (SMAs) for four earthquakes in India. It is shown through statistical analysis that the response obtained from the SRRs is comparable to that from the SMAs. A method has been presented for estimating peak ground acceleration (PGA) from SRR data. Thus, it is shown that SRRs can provide a substantial amount of PGA data for attenuation studies. Many countries may find SRRs useful because of the low costs associated with their manufacture and maintenance.


1998 ◽  
Vol 88 (4) ◽  
pp. 1063-1069
Author(s):  
M. L. Sharma

Abstract An attenuation relationship for peak horizontal ground accelerations for Himalayan region in India has been developed. The data base consists of 66 peak ground horizontal accelerations from five earthquakes recorded by strong-motion arrays in India. The present analysis uses a two-step stratified regression model. The attenuation relationship proposed is log ( A ) = − 1.072 + 0.3903 M − 1.21 log ( X + e 0.5873 M ) , where A is the peak ground acceleration (g), M is the magnitude, and X is the hypocentral distance from the source. The residual sum of squares is 0.14. Comparison with other such attenuation relationships have been made. The proposed relationship giving lesser values at shorter distances compared to other relationships needs further investigation with a larger data set. The attenuation relationship needs upgradation when more data become available in future.


2003 ◽  
Vol 19 (3) ◽  
pp. 511-529 ◽  
Author(s):  
John E. Ebel ◽  
David J. Wald

We describe a new probabilistic method that uses observations of modified Mercalli intensity (MMI) from past earthquakes to make quantitative estimates of ground shaking parameters (i.e., peak ground acceleration, peak ground velocity, 5% damped spectral acceleration values, etc.). The method uses a Bayesian approach to make quantitative estimates of the probabilities of different levels of ground motions from intensity data given an earthquake of known location and magnitude. The method utilizes probability distributions from an intensity/ground motion data set along with a ground motion attenuation relation to estimate the ground motion from intensity. The ground motions with the highest probabilities are the ones most likely experienced at the site of the MMI observation. We test the method using MMI/ground motion data from California and published ground motion attenuation relations to estimate the ground motions for several earthquakes: 1999 Hector Mine, California (M7.1); 1988 Saguenay, Quebec (M5.9); and 1982 Gaza, New Hampshire (M4.4). In an example where the method is applied to a historic earthquake, we estimate that the peak ground accelerations associated with the 1727 (M∼5.2) earthquake at Newbury, Massachusetts, ranged from 0.23 g at Newbury to 0.06 g at Boston.


2008 ◽  
Vol 14 ◽  
pp. 93-98 ◽  
Author(s):  
L. Ocola

Abstract. Post-disaster reconstruction management of urban areas requires timely information on the ground response microzonation to strong levels of ground shaking to minimize the rebuilt-environment vulnerability to future earthquakes. In this paper, a procedure is proposed to quantitatively estimate the severity of ground response in terms of peak ground acceleration, that is computed from macroseismic rating data, soil properties (acoustic impedance) and predominant frequency of shear waves at a site. The basic mathematical relationships are derived from properties of wave propagation in a homogeneous and isotropic media. We define a Macroseismic Intensity Scale IMS as the logarithm of the quantity of seismic energy that flows through a unit area normal to the direction of wave propagation in unit time. The derived constants that relate the IMS scale and peak acceleration agree well with coefficients derived from a linear regression between MSK macroseismic rating and peak ground acceleration for historical earthquakes recorded at a strong motion station, at IGP's former headquarters, since 1954. The procedure was applied to 3-October-1974 Lima macroseismic intensity data at places where there was geotechnical data and predominant ground frequency information. The observed and computed peak acceleration values, at nearby sites, agree well.


2019 ◽  
Vol 35 (2) ◽  
pp. 955-976 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is important to investigate strong-motion time series recorded at dams to understand their complex seismic responses. This paper develops a strong-motion database recorded at existing embankment dams and analyzes correlations between dam dynamic responses and ground-motion parameters. The Japan Commission on Large Dams database used here includes 190 recordings at the crests and foundations of 60 dams during 54 earthquakes from 1978 to 2012. Seismic amplifications and fundamental periods from recorded time series were computed and examined by correlation with shaking intensities and dam geometries. The peak ground acceleration (PGA) at the dam crest increases as the PGA at the foundation bedrock increases, but their ratio gradually decreases. The fundamental period broadly increases with the dam height and PGA at the foundation bedrock. The nonlinear dam response becomes more apparent as the PGA at the foundation bedrock becomes >0.2 g. The prediction models of these correlations are proposed for estimating the seismic response of embankment dams, which can inform the preliminary design stage.


2000 ◽  
Vol 16 (2) ◽  
pp. 511-532 ◽  
Author(s):  
Jonathan P. Stewart

Strong motion data from sites having both an instrumented structure and free-field accelerograph are compiled to evaluate the conditions for which foundation recordings provide a reasonably unbiased estimate of free-field motion with minimal uncertainty. Variations between foundation and free-field spectral acceleration are found to correlate well with dimensionless parameters that strongly influence kinematic and inertial soil-structure interaction phenomena such as embedement ratio, dimensionless frequency (i.e., product of radial frequency and foundation radius normalized by soil shear wave velocity), and ratio of structure-to-soil stiffness. Low frequency components of spectral acceleration recorded on shallowly embedded foundations are found to provide good estimates of free-field motion. In contrast, foundation-level peak ground acceleration (both horizontal and vertical) and maximum horizontal velocity, are found to be de-amplified. Implications for ground motion selection procedures employed in attenuation relations are discussed, and specific recommendations are made as to how these procedures could be improved.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Anand Joshi ◽  
Ashvini Kumar ◽  
Heriberta Castanos ◽  
Cinna Lomnitz

This paper presents use of semiempirical method for seismic hazard zonation. The seismotectonically important region of Uttarakhand Himalaya has been considered in this work. Ruptures along the lineaments in the area identified from tectonic map are modeled deterministically using semi empirical approach given by Midorikawa (1993). This approach makes use of attenuation relation of peak ground acceleration for simulating strong ground motion at any site. Strong motion data collected over a span of three years in this region have been used to develop attenuation relation of peak ground acceleration of limited magnitude and distance applicability. The developed attenuation relation is used in the semi empirical method to predict peak ground acceleration from the modeled rupture planes in the area. A set of values of peak ground acceleration from possible ruptures in the area at the point of investigation is further used to compute probability of exceedance of peak ground acceleration of values 100 and 200 gals. The prepared map shows that regions like Tehri, Chamoli, Almora, Srinagar, Devprayag, Bageshwar, and Pauri fall in a zone of 10% probability of exceedence of peak ground acceleration of value 200 gals.


Sign in / Sign up

Export Citation Format

Share Document