Seismic Response of Embankment Dams Based on Recorded Strong-Motion Data in Japan

2019 ◽  
Vol 35 (2) ◽  
pp. 955-976 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is important to investigate strong-motion time series recorded at dams to understand their complex seismic responses. This paper develops a strong-motion database recorded at existing embankment dams and analyzes correlations between dam dynamic responses and ground-motion parameters. The Japan Commission on Large Dams database used here includes 190 recordings at the crests and foundations of 60 dams during 54 earthquakes from 1978 to 2012. Seismic amplifications and fundamental periods from recorded time series were computed and examined by correlation with shaking intensities and dam geometries. The peak ground acceleration (PGA) at the dam crest increases as the PGA at the foundation bedrock increases, but their ratio gradually decreases. The fundamental period broadly increases with the dam height and PGA at the foundation bedrock. The nonlinear dam response becomes more apparent as the PGA at the foundation bedrock becomes >0.2 g. The prediction models of these correlations are proposed for estimating the seismic response of embankment dams, which can inform the preliminary design stage.

2021 ◽  
Vol 2099 (1) ◽  
pp. 012060
Author(s):  
V A Mironov ◽  
S A Peretokin ◽  
K V Simonov

Abstract This study is devoted to the development of algorithms and software for earthquake record processing. The algorithms are based on the methodology used by the Pacific Earthquake Engineering Research Center for the implementation of the scientific project NGA-West2. The purpose of processing is to determine reliable values of ground acceleration and other parameters of earthquakes from the available records of velocity time series. To analyze the operation of the algorithms, earthquake records (simultaneously recorded time series of acceleration and velocity) taken from the European Rapid Raw Strong-Motion database were used. The developed algorithms and the implemented software will allow in the future to form a database of strong motions for building regional attenuation models on the territory of the Russian Federation.


2019 ◽  
Vol 92 ◽  
pp. 16015
Author(s):  
Hector Marquez ◽  
Mehrad Kamalzare

The integrity of the state and national system of embankment dams and levees is a crucial component in ensuring the safety of protected communities in any country. The failure of such systems due to natural or man-made hazards can have monumental repercussions, sometimes with dramatic and unanticipated consequences on human life, property and the economy of the states and the country. For highly seismic areas such as Southern California, it is critical to investigate and study the seismic response of embankment dams and levees for the afore mentioned reasons. While experimental studies of embankment dams under seismic loads is expensive, very time consuming, and limited, numerical studies usually suffer from lack of legitimate real data for verification of the developed models. However, organizations such as the California Strong Motion Instrumentation Program (CSMIP) instrument lifeline structures such as earth dams and levees with accelerometers and actively collect strong-motion data. The data obtained from CSMIP accelerometers is then processed by the Center for Engineering Strong Motion Data (CESMD) and made public for earthquake engineering applications. In this study, numerical models of existing earth embankment dams verified with site specific CESMD data are created in order to analyze their stability for a future earthquake, for post-earthquake response purposes. The seismic fragility of the modelled dams was assessed, providing insight for decision makers regarding priority areas important for matters such as maintenance, dam retrofit, or first-aid response locations for a hypothetical major earthquake. Society can benefit from increased awareness of the seismic response of the modelled structures and can be better prepared for a potential catastrophic seismic event.


2000 ◽  
Vol 16 (2) ◽  
pp. 511-532 ◽  
Author(s):  
Jonathan P. Stewart

Strong motion data from sites having both an instrumented structure and free-field accelerograph are compiled to evaluate the conditions for which foundation recordings provide a reasonably unbiased estimate of free-field motion with minimal uncertainty. Variations between foundation and free-field spectral acceleration are found to correlate well with dimensionless parameters that strongly influence kinematic and inertial soil-structure interaction phenomena such as embedement ratio, dimensionless frequency (i.e., product of radial frequency and foundation radius normalized by soil shear wave velocity), and ratio of structure-to-soil stiffness. Low frequency components of spectral acceleration recorded on shallowly embedded foundations are found to provide good estimates of free-field motion. In contrast, foundation-level peak ground acceleration (both horizontal and vertical) and maximum horizontal velocity, are found to be de-amplified. Implications for ground motion selection procedures employed in attenuation relations are discussed, and specific recommendations are made as to how these procedures could be improved.


2014 ◽  
Vol 915-916 ◽  
pp. 122-125
Author(s):  
Xiao Fei Li ◽  
Rui Sun ◽  
Xiao Bo Yu

In order to test the applicable of the seismic response analysis procedures SHAKE2000 and LSSRLI-1 for class ІІ site, 17 stations and 35 underground strong motion records of KiK-net are selected from Class ІІ site. 210 working conditions are used to verify the applicability of the two soil seismic response analysis programs at Class ІІ site. These two programs are used to calculate the selected working conditions, giving the peak acceleration of the ground, the shear strain and the ground acceleration response spectra. By analyzing the results of the two programs and the measured results to assess the degree of difference between the two methods and which program is closer to the real situation. Studies have shown that in class ІІ site, in most cases, the results of SHAKE2000 and LSSRLI-1 differ little. While comparing with the actual records, SHAKE2000 is closer to the strong motion records.


2012 ◽  
Vol 28 (1) ◽  
pp. 77-103 ◽  
Author(s):  
Sudhir K. Jain ◽  
A. D. Roshan ◽  
Siddharth Yadav ◽  
Sonam Srivastava ◽  
Prabir C. Basu

In the 1960s several hundred structural response recorders (SRR) were installed all over India. An SRR is a simple instrument consisting of six seismoscopes that provide “maximum response” during an earthquake, without providing the time history. In the past earthquakes, these SRRs have provided several hundred records but they have not been effectively utilized for hazard studies because the measurements from these instruments are considered crude. This paper compares the data obtained from SRRs with that from more modern strong-motion accelerographs (SMAs) for four earthquakes in India. It is shown through statistical analysis that the response obtained from the SRRs is comparable to that from the SMAs. A method has been presented for estimating peak ground acceleration (PGA) from SRR data. Thus, it is shown that SRRs can provide a substantial amount of PGA data for attenuation studies. Many countries may find SRRs useful because of the low costs associated with their manufacture and maintenance.


2021 ◽  
Author(s):  
Fatma Sevil Malcıoğlu ◽  
Hakan Süleyman ◽  
Eser Çaktı

Abstract An MW 4.5 earthquake took place on September 24, 2019 in the Marmara Sea. Two days after, on September 26, 2019, Marmara region was rattled by an MW5.7 earthquake. With the intention of compiling an ample strong ground motion data set of recordings, we have utilized the stations of Istanbul Earthquake Rapid Response and Early Warning System operated by the Department of Earthquake Engineering of Boğaziçi University and of the National Strong Motion Network operated by AFAD. All together 438 individual records are used to calculate the source parameters of events; namely, corner frequency, radius, rupture area, average source dislocation, source duration and stress drop. Some of these parameters are compared with empirical relationships and discussed extensively. Duration characteristics are analyzed in two steps; first, by making use of the time difference between P-wave and S-wave onsets and then, by considering S-wave durations and significant durations. It is observed that they yield similar trends with global models. PGA, PGV and SA values are compared with three commonly used ground motion prediction models. At distances closer than about 60 km observed intensity measures mostly conform with the GMPE predictions. Beyond 60 km their attenuation is clearly faster than those of GMPEs. Frequency-dependent Q models are developed for both events. Their consistency with existing regional models are confirmed.


Author(s):  
D. Denham ◽  
G. R. Small

A Strong Motion Data Centre, for the collection, storage, distribution and preliminary analysis of accelerograms from the Australian and New Guinean regions, has recently been established at Canberra by the Australian Bureau of Mineral Resources. The work undertaken at the Centre is described and examples of the processing facilities available are given. Extensive use is made of computers in the analysis of the accelerograms and the plotting of the results. By December 1970 thirteen accelerographs had been obtained, by several institutions, for installation in the Australian and New Guinea regions and 24 accelerograms had been received at the Centre for analysis. The instruments located on unconsolidated material at Lae, Yonki and Panguna are currently producing about 5 accelerograms per year and the maximum ground acceleration recorded so far, of 0.12g, was obtained at Panguna, where the accelerograph is located on recent unconsolidated volcanic ash.


2008 ◽  
Vol 24 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Brian Chiou ◽  
Robert Darragh ◽  
Nick Gregor ◽  
Walter Silva

A key component of the NGA research project was the development of a strong-motion database with improved quality and content that could be used for ground-motion research as well as for engineering practice. Development of the NGA database was executed through the Lifelines program of the PEER Center with contributions from several research organizations and many individuals in the engineering and seismological communities. Currently, the data set consists of 3551 publicly available multi-component records from 173 shallow crustal earthquakes, ranging in magnitude from 4.2 to 7.9. Each acceleration time series has been corrected and filtered, and pseudo absolute spectral acceleration at multiple damping levels has been computed for each of the 3 components of the acceleration time series. The lowest limit of usable spectral frequency was determined based on the type of filter and the filter corner frequency. For NGA model development, the two horizontal acceleration components were further rotated to form the orientation-independent measure of horizontal ground motion (GMRotI50). In addition to the ground-motion parameters, a large and comprehensive list of metadata characterizing the recording conditions of each record was also developed. NGA data have been systematically checked and reviewed by experts and NGA developers.


2012 ◽  
Vol 594-597 ◽  
pp. 1658-1667
Author(s):  
Zhi Jian Wu ◽  
Lan Min Wang ◽  
Ping Wang ◽  
Hang Shi ◽  
Tuo Chen

Based on mobile strong motion array observation, borehole exploration and site seismic response analysis, the site effects of mountainous topography in southeastern Gansu and the topography of loess tableland on ground motion were investigated in details. The analysis on acceleration records of aftershocks showed that the peak ground acceleration at top of the mountain is nearly 2 times of that at the foot of it. The seismic response analysis of sites shows that the loess tableland may amplify PGA by 1.44-2.0 times. Therefore, site effects of mountains and loess topography on ground motion should been taken account into seismic design.


Sign in / Sign up

Export Citation Format

Share Document