Bacterial enhancement of contaminant bioavailability: effects of random motility and chemotaxis

2021 ◽  
Author(s):  
Rajveer Singh
Keyword(s):  
2012 ◽  
Vol 198 (5) ◽  
pp. 941-952 ◽  
Author(s):  
Stephanie Woo ◽  
Michael P. Housley ◽  
Orion D. Weiner ◽  
Didier Y.R. Stainier

Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 771-779 ◽  
Author(s):  
J Doukas ◽  
HB Hechtman ◽  
D Shepro

Abstract The influence of endothelial cells (ECs) on polymorphonuclear leukocyte (PMN) motility was examined using in vitro assays of PMN diapedesis and chemotaxis. ECs are seen to release arachidonic acid (20:4) metabolites that directly increase or decrease PMN movement, with their general effect being enhanced motility. This effect can be increased or decreased by treating ECs with stimulators or inhibitors of 20:4 metabolism, respectively. The metabolites include thromboxane B2, which increases PMN random motility, chemotaxis, and diapedesis in a dose- responsive manner and which acts as a chemoattractant; 6-keto-PGF1 alpha, which increases chemotaxis and diapedesis at high doses but decreases these responses at low doses; and a lipoxygenase-derived metabolite, suggested to be 5-hydroxyeicosatetraenoic acid, which increases chemotaxis and diapedesis. Thromboxane A2 and prostacyclin mimetics also affect chemotaxis in qualitatively similar manners as TxB2 and 6-keto-PGF1 alpha, respectively, but display greater potency. EC release of these metabolites is also seen to be substratum modulated, with an increased production by cells cultured on extracellular matrices. These results suggest that ECs are capable of modulating PMN motility and suggest a role for ECs in the control of PMN diapedesis.


1988 ◽  
Vol 106 (2) ◽  
pp. 303-309 ◽  
Author(s):  
RT Tranquillo ◽  
DA Lauffenburger ◽  
SH Zigmond

Two central features of polymorphonuclear leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic "persistence time" between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an "orientation bias" characterizing the fraction of cells moving up the gradient. A coherent picture of cell movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper, we offer the possibility that "noise" in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we develop a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant/receptor binding. This model can simulate cell paths similar to those observed experimentally, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Furthermore, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. Thus, the concept of signal "noise" can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients.


2001 ◽  
Vol 154 (1) ◽  
pp. 161-176 ◽  
Author(s):  
Kip A. West ◽  
Huaye Zhang ◽  
Michael C. Brown ◽  
Sotiris N. Nikolopoulos ◽  
M.C. Riedy ◽  
...  

The small GTPases of the Rho family are intimately involved in integrin-mediated changes in the actin cytoskeleton that accompany cell spreading and motility. The exact means by which the Rho family members elicit these changes is unclear. Here, we demonstrate that the interaction of paxillin via its LD4 motif with the putative ARF-GAP paxillin kinase linker (PKL) (Turner et al., 1999), is critically involved in the regulation of Rac-dependent changes in the actin cytoskeleton that accompany cell spreading and motility. Overexpression of a paxillin LD4 deletion mutant (paxillinΔLD4) in CHO.K1 fibroblasts caused the generation of multiple broad lamellipodia. These morphological changes were accompanied by an increase in cell protrusiveness and random motility, which correlated with prolonged activation of Rac. In contrast, directional motility was inhibited. These alterations in morphology and motility were dependent on a paxillin–PKL interaction. In cells overexpressing paxillinΔLD4 mutants, PKL localization to focal contacts was disrupted, whereas that of focal adhesion kinase (FAK) and vinculin was not. In addition, FAK activity during spreading was not compromised by deletion of the paxillin LD4 motif. Furthermore, overexpression of PKL mutants lacking the paxillin-binding site (PKLΔPBS2) induced phenotypic changes reminiscent of paxillinΔLD4 mutant cells. These data suggest that the paxillin association with PKL is essential for normal integrin-mediated cell spreading, and locomotion and that this interaction is necessary for the regulation of Rac activity during these events.


Sign in / Sign up

Export Citation Format

Share Document