Study of Plasma Treatment of Produced Water from Oil and Gas Exploration

2021 ◽  
Author(s):  
Kamau Wright
2016 ◽  
Vol 32 (6) ◽  
Author(s):  
Subrata Mondal

AbstractProduced water (PW) from the oil/gas field is an important waste stream. Due to its highly pollutant nature and large volume of generation, the management of PW is a significant challenge for the petrochemical industry. The treatment of PW can improve the economic viability of oil and gas exploration, and the treated water can provide a new source of water in the water-scarce region for some beneficial uses. The reverse osmosis (RO) and selective nanofiltration (NF) membrane treatment of PW can reduce the salt and organic contents to acceptable levels for some beneficial uses, such as irrigation, and different industrial reuses. However, membrane fouling is a major obstacle for the membrane-based treatment of PW. In this review, the author discusses the polymeric membrane (mainly RO/NF) fouling during PW treatment. Membrane fouling mechanisms by various types of foulants, such as organic, inorganic, colloidal, and biological matters, are discussed. The review concludes with some of the measures to control fouling by membrane surface modification approaches.


2018 ◽  
Vol 31 ◽  
pp. 03004 ◽  
Author(s):  
Yusran Hedar ◽  
Budiyono

Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.


2020 ◽  
Vol 41 (3) ◽  
pp. 145-154
Author(s):  
Syafrizal Syafrizal

Petroleum that is produced from several oil wells produces a fluid containing a mixture of petroleum, natural gas and produced water. The produced water usually contains hazardous chemicals such as hydrocarbons, sulfides, ammonia, phenols and other heavy metals. One of the high pollutants in the water produced is phenol. Through a biodegradation process, the contents of phenolic compounds in the produced water are expected to be reduced so that it meets the quality standards of waste water for oil and gas exploration and production activities. This research is development of the results of previous studies using a bioreactor with a larger scale, namely 3 L. The degradation process of phenolic compounds is carried out in optimal conditions, namely: pH 7, temperature 300C, and selected simple media: NP (5: 1) derived from urea and NPK + 0.1% yeast extract. The results of this study indicated that P. aeruginos and bacterial consortium may degrade phenolic compounds very well, which was 5.3 times faster than the previous studies. The biodegradation percentage was 98.40% in P. aeruginosa and 99.03% in bacterial consortium respectively. The monod kinetics model approach was successfully carried out and gave the value of parameters ?Max, Km, YS/X, and ?d respectively of 0.6305 hours-1, 0.0280 mg/L, 7 10-7 mg/L/ CFU/mL, and 0.00575 hours-1 in P. aeruginosa and 0.3272 hours-1, 0.0355 mg/L, 6.63 10-7 mg/L/CFU/ mL, and 0.00279 hours-1 in bacterial consortium. Based on the valuesof these parameters, P. aeruginosa has better affinity and growth.


2018 ◽  
Vol 34 ◽  
pp. 02035 ◽  
Author(s):  
Talia Afzal ◽  
Mohamed Hasnain Isa ◽  
Muhammad Raza ul Mustafa

Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

2019 ◽  
Author(s):  
Brian W. Stewart ◽  
◽  
Zachary G. Tieman ◽  
Rosemary C. Capo ◽  
Rebecca M. Matecha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document