Effect of Flow Rate on High Performance Liquid Chromatography Column Re-equilibration after Gradient Elution

2021 ◽  
Author(s):  
Michael Robert Fletcher
1986 ◽  
Vol 53 (4) ◽  
pp. 595-600 ◽  
Author(s):  
Christophe Carles ◽  
Bruno Ribadeau-Dumas

SummaryTaking as an example a tryptic hydrolysate of bovine β-casein, it was shown that the method used for the determination of optimal elution conditions for isocratic systems also applied to the separation of complex peptide mixtures by reversed-phase high-performance liquid chromatography with linear gradients. Using a C18 column and the same solvents, successive studies of the influence of flow rate, pH and temperature allowed a satisfactory separation of the sample in less than 30 min. Valuable information on the specificity of the action of trypsin on β-casein was deduced from the yield of the eluted peptides.


2019 ◽  
Vol 16 ◽  
Author(s):  
Joanna Wittckind Manoel ◽  
Camila Ferrazza Alves Giordani ◽  
Livia Maronesi Bueno ◽  
Sarah Chagas Campanharo ◽  
Elfrides Eva Sherman Schapoval ◽  
...  

Introduction: Impurity analysis is an important step in the quality control of pharmaceutical ingredients and final product. Impurities can arise from drug synthesis or excipients and even at small concentrations may affect product efficacy and safety. In this work two methods using high performance liquid chromatography (HPLC) were developed and validated for the evaluation of besifloxacin and its impurity synthesis, with isocratic elution and another with gradient elution. Method: The analysis by HPLC in isocratic elution mode was performed using a cyano column maintained at 25 °C. The mobile phase was composed by 0.5% triethylamine (pH 3.0): acetonitrile (88:12 v/v) eluted at a flow rate of 1.0 ml/min with detection at 330 nm. The gradient elution method was carried out with the same column and mobile phase components only modifying the rate between organic and aqueous phase during analysis. The procedures have been validated according to internationally accepted guidelines, observing results within acceptable limits. Results: The methods presented were found to be linear in the 140 to 260 µg/ml range for besifloxacin and 0.3 to 2.3 µg/ml for an impurity named A. The limits of detection and quantification were respectively 0.07 and 0.3 µg/ml for impurity A, with a 20 µL injection volume. The precision achieved for all analyses performed provided RSD inter-day equal to 6.47 and 6.36% for impurity A with isocratic elution and gradient, respectively. The accuracy was higher than 99% and robustness exhibited satisfactory results. In the isocratic method an analysis time of 25 min and 15 min was obtained for gradient. For impurity A, the number of theoretical plates in the isocratic mode was about 5000 while in the gradient mode it was about 45000, hence, it made the column more efficient by changing the mobile phase composition during elution. In besifloxacin raw material and in pharmaceutical product used in this study, other related impurities were present but but impurity A was searched for and not detected Conclusion: The proposed methods can be applied for quantitative determination of impurities in the analysis of the besifloxacin raw material, as well as in ophthalmic suspension of the drug, considering the quantitation limit.


2019 ◽  
Vol 15 (2) ◽  
pp. 130-137
Author(s):  
Hui Jiang ◽  
Lianhao Fu ◽  
Yu Wang ◽  
Shaozhi Wang ◽  
Xiaoxu Zhang ◽  
...  

Background: Jingzhiguanxin (JZGX) tablet, a traditional Chinese prescription, is commonly used for treating coronary heart disease and angina pectoris in the clinic. There are six active components (Danshensu (DSS), Protocatechuic aldehyde (PD), Paeoniflorin (PF), Ferulic acid (FA), Salvianolic acid B (Sal B) and Tanshinone IIA (TA)) in JZGX tablet. </P><P> Objective: In this paper, a simple and reliable method was used for simultaneous determining the six active components by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Methods: These six active components were separated on an Agilent Zorbax Eclipse XDB-C18 column (150 mmx4.6 mm, 5 µm) at 30 °C. Acetonitrile (A), methanol (B) and 0.5% H3PO4 aqueous solution (C) were used as mobile phase for gradient elution. The flow rate was 1 mL/min and the detection wavelengths were set at 280 nm for DSS, PD and Sal B, 230 nm for PF, 320 nm for FA and 270 nm for TA, respectively. Results: All of the six components showed good linearity regressions (r2≥0.9997) in the detected concentration range. The recovery rates and coefficient of variation (CV) for all analytes were 98.66%- 100.18% and 0.75%-1.89%, respectively. This method was successfully applied to simultaneously determine the six components in JZGX tablet from different batches and manufacturers. Conclusion: The validated method can be used in routine quality control analysis of JZGX tablet without any interference.


1977 ◽  
Vol 23 (12) ◽  
pp. 2288-2291 ◽  
Author(s):  
P H Culbreth ◽  
I W Duncan ◽  
C A Burtis

Abstract We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2189 ◽  
Author(s):  
Yingjie He ◽  
Zongkai Li ◽  
Wei Wang ◽  
Suren Sooranna ◽  
Yiting Shi ◽  
...  

Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract. There were 104 compounds belonging to eight structure types, including 13 amino acids or peptides, seven alkaloids, 18 flavanones, 14 flavones, 15 polymethoxyflavonoids, six triterpenoids, nine coumarins, and 18 volatile oils, as well as four other compounds that were systematically identified as the basic components from AF, and among them, 41 compounds were reported for the first time. Twelve bioactive ingredients were chosen as the benchmark markers to evaluate the quality of AF. The analysis was completed with a gradient elution at a flow rate of 0.7 mL/min within 55 min. This efficient method was validated showing good linearity, precision, stability, repeatability and recovery. Furthermore, the method was successfully applied to the simultaneous determination of 12 chemical markers in different samples of AF. This study could be applied to the identification of multiple bioactive substances and improve the quality control of AF.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (07) ◽  
pp. 14-21
Author(s):  
S. Sahu ◽  
◽  
R.M Singh ◽  
S.C. Mathur ◽  
D. K Sharma ◽  
...  

A simple, fast, precise and accurate ultra high performance liquid chromatography method was developed for degradation study of eletriptan hydrobromide (EH) under exaggerated conditions. An Inertsil ODS C18 (250 x 4.6 mm, 5µm) column in isocratic mode was used with mobile phase comprising of water, methanol and trifluoroacetic acid mixed in the ratio 55:45:0.1 % V/V/V, maintained at pH 3.5. The flow rate was set at 0.4 mL per minute with UV detection at 225 nm. The retention time of EH was found to be 3.7 minutes. Linearity for EH was found in the range of 3.5- 200 µg per mL and percentage recoveries were obtained in the range of 100.2 % to 100.6 %. The method was capable of resolving all degradants and principle component in sample. The proposed method is accurate, precise, selective, reproducible, and rapid for detection of degradation of eletriptan hydrobromide.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jiao Wang ◽  
Yichun Sun ◽  
Zhan Li ◽  
Wei Li ◽  
Yuanyuan Pang ◽  
...  

To evaluate the quality of Salvia miltiorrhiza Bunge, high-performance liquid chromatography-diode array detector (HPLC/UV-PAD), near infrared (NIR) spectroscopy, and chemometrics were used to discriminate nine components of samples from four different geographical locations. HPLC was performed with a C18 (5 μm, 4.6 mm × 250 mm) column and 0.1% formic acid aqueous solution-acetonitrile with a gradient elution system. Orthogonal partial least squares discriminant analysis was used to identify the amounts of salvianolic acid B. NIR was used to distinguish rapidly S. miltiorrhiza Bunge samples from different geographical locations. In this assay, discriminant analysis was performed, and the accuracy was found to be 100%. The combination of these two methods can be used to quickly and accurately identify S. miltiorrhiza Bunge from different geographical locations.


Sign in / Sign up

Export Citation Format

Share Document