scholarly journals Resistance to Soybean Mosaic Virus with High Yield on F7 Soybean Lines

2017 ◽  
Vol 19 (02) ◽  
pp. 226-232 ◽  
Author(s):  
Wuye Ria Andayanie ◽  
Venny Santosa ◽  
Muji Rahayu
2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody


2014 ◽  
Vol 14 (2) ◽  
pp. 152-159
Author(s):  
Wuye Ria Andayanie ◽  
Praptiningsih Gamawati Adinurani

Soybean lines selection of F4 population resistant  to soybean mosaic disease (Soybean mosaic virus) with high yield.  The soybean breeding program is usually not purposedly done for resistance to Soybean mosaic virus (SMV) but rather for crop yields. The experiment was aimed to obtain soybean lines of F4 population resistant to soybean mosaic disease with high yield.  F2-F4 plants that have been inoculated with the T isolate of SMV one week after planting were selected by the pedigree  in the screen house. The result indicated eight  F4 populations (Wilis x L. Temanggung; Wilis x L. Jombang; Wilis x Pangrango; Wilis x PI 200485;  Gepak Kuning x L. Jombang; Gepak Kuning x L. Temanggung; Gepak Kuning x Malabar; Gepak Kuning x PI 200485) produced medium seed size (from 9.84-10.26 g 100/seeds).  Gepak Kuning x Mlg 3288  showed more resistant than Gepak Kuning x PI 200485. The seed produced by Gepak Kuning x PI 200485 was 1.97 ton/ha. There were no F4 populations that had higher yield and bigger seed size than Gepak Kuning x PI 200485 even though they were  moderately resistant to SMV. Therefore, these lines of Gepak Kuning x Mlg 3288 and Gepak  Kuning x  PI 200485 might provide exellent sources to develop a new variety that resistant to SMV and of high yield.


2010 ◽  
Vol 36 (4) ◽  
pp. 549-554
Author(s):  
Rong-Xia GUAN ◽  
Yu-Bo CHEN ◽  
Hong-Liang FANG ◽  
Shuo LIU ◽  
Wei-Li TENG ◽  
...  

Crop Science ◽  
1989 ◽  
Vol 29 (6) ◽  
pp. 1439-1441 ◽  
Author(s):  
G. R. Buss ◽  
C. W. Roane ◽  
S. A. Tolin ◽  
P. Chen

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1922
Author(s):  
Ramila Mammadova ◽  
Immacolata Fiume ◽  
Ramesh Bokka ◽  
Veronika Kralj-Iglič ◽  
Darja Božič ◽  
...  

Plant-derived nanovesicles (NVs) have attracted interest due to their anti-inflammatory, anticancer and antioxidative properties and their efficient uptake by human intestinal epithelial cells. Previously we showed that tomato (Solanum lycopersicum L.) fruit is one of the interesting plant resources from which NVs can be obtained at a high yield. In the course of the isolation of NVs from different batches of tomatoes, using the established differential ultracentrifugation or size-exclusion chromatography methods, we occasionally observed the co-isolation of viral particles. Density gradient ultracentrifugation (gUC), using sucrose or iodixanol gradient materials, turned out to be efficient in the separation of NVs from the viral particles. We applied cryogenic transmission electron microscopy (cryo-TEM), scanning electron microscopy (SEM) for the morphological assessment and LC–MS/MS-based proteomics for the protein identification of the gradient fractions. Cryo-TEM showed that a low-density gUC fraction was enriched in membrane-enclosed NVs, while the high-density fractions were rich in rod-shaped objects. Mass spectrometry–based proteomic analysis identified capsid proteins of tomato brown rugose fruit virus, tomato mosaic virus and tomato mottle mosaic virus. In another batch of tomatoes, we isolated tomato spotted wilt virus, potato virus Y and southern tomato virus in the vesicle sample. Our results show the frequent co-isolation of plant viruses with NVs and the utility of the combination of cryo-TEM, SEM and proteomics in the detection of possible viral contamination.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hexiang Luan ◽  
Wenlin Liao ◽  
Yingpei Song ◽  
Haopeng Niu ◽  
Ting Hu ◽  
...  

2013 ◽  
Vol 103 (9) ◽  
pp. 941-948 ◽  
Author(s):  
Sushma Jossey ◽  
Houston A. Hobbs ◽  
Leslie L. Domier

Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean (Glycine max). The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing mutants in and chimeric recombinants between SMV 413 (efficiently aphid and seed transmitted) and an isolate of SMV G2 (not aphid or seed transmitted). As previously reported, the DAG amino acid sequence motif near the amino terminus of the coat protein (CP) was the major determinant in differences in aphid transmissibility of the two SMV isolates, and helper component proteinase (HC-Pro) played a secondary role. Seed transmission of SMV was influenced by P1, HC-Pro, and CP. Replacement of the P1 coding region of SMV 413 with that of SMV G2 significantly enhanced seed transmissibility of SMV 413. Substitution in SMV 413 of the two amino acids that varied in the CPs of the two isolates with those from SMV G2, G to D in the DAG motif and Q to P near the carboxyl terminus, significantly reduced seed transmission. The Q-to-P substitution in SMV 413 also abolished virus-induced seed-coat mottling in plant introduction 68671. This is the first report associating P1, CP, and the DAG motif with seed transmission of a potyvirus and suggests that HC-Pro interactions with CP are important for multiple functions in the virus infection cycle.


1999 ◽  
Vol 354 (1383) ◽  
pp. 521-529 ◽  
Author(s):  
B. D. Harrison ◽  
T. M. A. Wilson

Beijerinck's (1898) recognition that the cause of tobacco mosaic disease was a novel kind of pathogen became the breakthrough which led eventually to the establishment of virology as a science. Research on this agent, tobacco mosaic virus (TMV), has continued to be at the forefront of virology for the past century. After an initial phase, in which numerous biological properties of TMV were discovered, its particles were the first shown to consist of RNA and protein, and X–ray diffraction analysis of their structure was the first of a helical nucleoprotein. In the molecular biological phase of research, TMV RNA was the first plant virus genome to be sequenced completely, its genes were found to be expressed by cotranslational particle disassembly and the use of subgenomic mRNA, and the mechanism of assembly of progeny particles from their separate parts was discovered. Molecular genetical and cell biological techniques were then used to clarify the roles and modes of action of the TMV non–structural proteins: the 126 kDa and 183 kDa replicase components and the 30 kDa cell–to–cell movement protein. Three different TMV genes were found to act as avirulence genes, eliciting hypersensitive responses controlled by specific, but different, plant genes. One of these (the N gene) was the first plant gene controlling virus resistance to be isolated and sequenced. In the biotechnological sphere, TMV has found several applications: as the first source of transgene sequences conferring virus resistance, in vaccines consisting of TMV particles genetically engineered to carry foreign epitopes, and in systems for expressing foreign genes. TMV owes much of its popularity as a research model to the great stability and high yield of its particles. Although modern methods have much decreased the need for such properties, and TMV may have a less dominant role in the future, it continues to occupy a prominent position in both fundamental and applied research.


Sign in / Sign up

Export Citation Format

Share Document