scholarly journals Identification of Tomato Infecting Viruses That Co-Isolate with Nanovesicles Using a Combined Proteomics and Electron-Microscopic Approach

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1922
Author(s):  
Ramila Mammadova ◽  
Immacolata Fiume ◽  
Ramesh Bokka ◽  
Veronika Kralj-Iglič ◽  
Darja Božič ◽  
...  

Plant-derived nanovesicles (NVs) have attracted interest due to their anti-inflammatory, anticancer and antioxidative properties and their efficient uptake by human intestinal epithelial cells. Previously we showed that tomato (Solanum lycopersicum L.) fruit is one of the interesting plant resources from which NVs can be obtained at a high yield. In the course of the isolation of NVs from different batches of tomatoes, using the established differential ultracentrifugation or size-exclusion chromatography methods, we occasionally observed the co-isolation of viral particles. Density gradient ultracentrifugation (gUC), using sucrose or iodixanol gradient materials, turned out to be efficient in the separation of NVs from the viral particles. We applied cryogenic transmission electron microscopy (cryo-TEM), scanning electron microscopy (SEM) for the morphological assessment and LC–MS/MS-based proteomics for the protein identification of the gradient fractions. Cryo-TEM showed that a low-density gUC fraction was enriched in membrane-enclosed NVs, while the high-density fractions were rich in rod-shaped objects. Mass spectrometry–based proteomic analysis identified capsid proteins of tomato brown rugose fruit virus, tomato mosaic virus and tomato mottle mosaic virus. In another batch of tomatoes, we isolated tomato spotted wilt virus, potato virus Y and southern tomato virus in the vesicle sample. Our results show the frequent co-isolation of plant viruses with NVs and the utility of the combination of cryo-TEM, SEM and proteomics in the detection of possible viral contamination.

HortScience ◽  
1993 ◽  
Vol 28 (7) ◽  
pp. 746-747 ◽  
Author(s):  
Christopher J. French ◽  
Maureen Elder ◽  
Frank Skelton

Tomato mosaic virus (ToMV) virions were recovered from guttation fluid of systemically infected tomato (Lycopersicon esculentum Mill.) and visualized by electron microscopy. Similarly, pepper mild mottle virus (PMMV) particles were identified in gattation fluid of systemically infected green pepper (Capsicum annuum L.). Infectivity of ToMV and PMMV in guttation fluid samples was demonstrated on local and systemic hosts. As determined by enzyme-linked immunosorbent assay, the concentration of ToMV in tomato guttation fluid was 0.9 ± 0.2 μg·ml-1 and the concentration of PMMV in green pepper guttation fluid was 0.5 ± 0.1 μg·ml-1. The occurrence of infectious, mechanically transmissible viruses in guttation fluid maybe an important factor in the spread of plant viruses in greenhouse crops.


1966 ◽  
Vol 44 (6) ◽  
pp. 821-826 ◽  
Author(s):  
J. R. Edwardson ◽  
D. E. Purcifull ◽  
R. G. Christie

Particles within lesions of leaf tissue infected with either tobacco necrosis virus (TNV) or southern bean mosaic virus (SBMV) were compared with particles in embedded pellets of purified preparations of these viruses by an examination of thin sections. The mode of the diameters of particles in tissues and pellets was 20.5 mµ.It is assumed that the particles in infected tissues are virus particles on the basis of their similarities in size, shape, and arrangement with the particles in purified preparations.


2016 ◽  
Author(s):  
S. Ambrós ◽  
F. Martínez ◽  
P. Ivars ◽  
C. Hernández ◽  
F. de la Iglesia ◽  
...  

AbstractTomato is known to be a natural and experimental reservoir host for many plant viruses. In the last few years a new tobamovirus species, Tomato mottle mosaic virus (ToMMV), has been described infecting tomato and pepper plants in several countries worldwide. Upon observation of symptoms in tomato plants growing in a greenhouse in Valencia, Spain, we aimed to ascertain the etiology of the disease. Using standard molecular techniques, we first detected a positive sense single-stranded RNA virus as the probable causal agent. Next, we amplified, cloned and sequenced a ~3 kb fragment of its RNA genome which allowed us to identify the virus as a new ToMMV isolate. Through extensive assays on distinct plant species, we validated Koch’s postulates and investigated the host range of the ToMMV isolate. Several plant species were locally and/or systemically infected by the virus, some of which had not been previously reported as ToMMV hosts despite they are commonly used in research greenhouses. Finally, two reliable molecular diagnostic techniques were developed and used to assess the presence of ToMMV in different plants species. We discuss the possibility that, given the high sequence homology between ToMMV and Tomato mosaic virus, the former may have been mistakenly diagnosed as the latter by serological methods.


2004 ◽  
Vol 84 (2) ◽  
pp. 603-606 ◽  
Author(s):  
A. Rodríguez-Burruezo ◽  
J. Prohens ◽  
M. Leiva-Brondo ◽  
F. Nuez

Turia is a new salad pepino cultivar adapted to greenhouse cultivation in a wide range of environments with high yield and improved fruit quality. Its fruit is ovate in shape and has golden yellow skin covered with purple stripes, mild flavour and intense aroma. Turia is the first pepino cultivar tolerant to tomato mosaic virus. Key words: Solanum muricatum, cultivar description, tomato mosaic virus


2017 ◽  
Author(s):  
Budi Setiadi Daryono ◽  
Fauziatul Fitriyah ◽  
alin liana ◽  
Utari Saraswati ◽  
Keiko T. Natsuaki

Most of the cucurbits diseases in Indonesia are caused by plant viruses. Tobamovirus is one of the viral genera recently infected cucurbits. The members of cucurbits-infecting Tobamovirus are Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), Cucumber fruit mottle mosaic virus (CFMMV), Zucchini green mottle mosaic virus (ZGMMV), and Cucumber mottle virus (CuMoV). A research on the occurrence of cucurbits-infecting Tobamovirus in Indonesia was carried out in 2011. Based on the result, a new characteristic of viral particle were found in watermelon. The viral particle was previously identified as CGMMV based on electron microscope investigation revealed presence of rod-shaped and not enveloped virions. The virions were straight about 300 nm long and 28–30 nm in diameter. However, in some electron micrograph shows rare characteristic of the viral particle. The viral particles could joint each other to bend a new form. Two viral particles were able to joint and formed an angle. Moreover, some of viral particles could joint and form a longer viral particle (800-1100 nm), two to four times longer than CGMMV particle, but the both diameter of the virus are similar. These characteristics indicate that the viral particle is a novel virus, different from CGMMV or other Tobamovirus members.


Plant Disease ◽  
2009 ◽  
Vol 93 (7) ◽  
pp. 761-761 ◽  
Author(s):  
M. I. Font ◽  
M. C. Córdoba-Sellés ◽  
M. C. Cebrián ◽  
J. A. Herrera-Vásquez ◽  
A. Alfaro-Fernández ◽  
...  

During the springs of 2007 and 2008, leaf deformations as well as symptoms of mild green and chlorotic mosaic were observed on pepper (Capsicum annuum) plants grown in Monastir (northwest Tunisia) and Kebili (southeast Tunisia). With the support of projects A/5269/06 and A/8584/07 from the Spanish Agency for International Cooperation (AECI), symptomatic leaf samples were analyzed by transmission electron microscopy (TEM) of leaf-dip preparations. Typical tobamovirus-like particles (rigid rods ≈300 nm long) were observed in crude plant extracts. According to literature, at least six tobamoviruses infect peppers: Paprika mild mottle virus (PaMMV); Pepper mild mottle virus (PMMoV); Ribgrass mosaic virus (RMV); Tobacco mild green mosaic virus (TMGMV); Tobacco mosaic virus (TMV); and Tomato mosaic virus (ToMV) (1). Extracts from six symptomatic plants from Monastir and four from Kebili fields tested negative for ToMV, TMV, and PMMoV and tested positive for TMGMV by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies specific to each virus (Loewe Biochemica GMBH, Sauerlach, Germany). To confirm the positive TMGMV results, total RNAs from 10 symptomatic plants that tested positive by ELISA were extracted and analyzed by reverse transcription (RT)-PCR using primers designed to specifically amplify a region of the coat protein gene (CP) of TMGMV (2). The 524-bp TMGMV-CP specific DNA fragment was amplified from all samples, but was not amplified from healthy plants or the sterile water used with negative controls. RT-PCR products were purified and directly sequenced. BLAST analysis of the obtained sequence (GenBank No. EU770626) showed 99 to 98% nucleotide identity with TMGMV isolates PAN-1, DSMZ PV-0113, TMGMV-Pt, and VZ1 (GenBank Nos. EU934035, EF469769, AM262165, and DQ460731, respectively) and less than 69% with PaMMV and PMMoV isolates (GenBank Nos. X72586 and AF103777, respectively). Two TMGMV-positive, singly, infected symptomatic pepper plants collected from Monastir and Kebili were used in mechanical transmissions to new pepper and tomato plants. Inoculated pepper plants exhibited mild chlorosis symptoms and tested positive for TMGMV only; however, inoculated tomato plants cv. Marmande were asymptomatic and tested negative as expected for TMGMV infection (1). To our knowledge, although C. annuum has been shown as a natural host for TMGMV (2), this is the first report of TMGMV in Tunisia. Reference: (1) A. A. Brunt et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. Online publication, 1996. (2) J. Cohen et al. Ann. Appl. Biol. 138:153, 2001.


Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 697-697 ◽  
Author(s):  
E. Marys ◽  
O. Carballo

During 2001, watercress (Rorippa nasturtium-aquaticum) plants displayed in vegetable markets located in the district capital, Caracas, showed severe leaf distortion, chlorosis, and mosaic. Viral etiology was suspected, and several plants were brought to the lab for further analyses. Electron microscopic studies of leaf-dip preparations from symptomatic samples revealed flexuous viral particles 750 nm long. Infected cells contained pinwheel inclusions and scrolls typical of those associated with infection by a potyvirus. The virus was sap-transmitted back to watercress, which developed symptoms identical to those first observed. Disease symptoms were also reproduced on Nicotiana benthamiana using mechanical inoculation with watercress-infected sap. All samples were tested by enzyme-linked immunosorbent assay, using polyclonal antibodies (Agdia, Elkhart, IN) to Turnip mosaic virus (TuMV), the only potyvirus that has been found infecting watercress plants (1). TuMV was detected in 88% of 100 samples taken from 18 markets on a single day. Symptoms were noted in every market when visited once a month during a 6-month period. The high percentage of TuMV-infected watercress in the 18 local markets (all 10 to 11 km from watercress fields) makes further epidemiological studies desirable. To our knowledge, this is the first report of TuMV infection of watercress in Venezuela. References: (1) A. Brunt et al. Viruses of Plants. CAB International, Wallingford, Oxon, UK. 1996.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 198-198 ◽  
Author(s):  
J. A. Herrera-Vásquez ◽  
A. Alfaro-Fernández ◽  
M. C. Córdoba-Sellés ◽  
M. C. Cebrián ◽  
M. I. Font ◽  
...  

In February of 2008, in open-field-grown tomato crops (Solanum lycopersicum L.) from the central regions of Coclé, Herrera, Los Santos, and Veraguas of Panama, unusual disease symptoms, including deformation, necrosis, purple margins, interveinal yellowing, downward and upward curling of the leaflets alternately, necrotic lines in sepals and branches, fruits distorted with necrotic lines on the surface, and severe stunting, were observed. Tomato production was seriously damaged. To verify the identity of the disease, five symptomatic tomato plants from four fields of these regions were selected and analyzed by double-antibody sandwich (DAS)-ELISA using specific antibodies to Cucumber mosaic virus (CMV), Potato virus X (PVX), Potato virus Y (PVY), Tomato mosaic virus (ToMV), Tomato spotted wilt virus (TSWV) (Loewe Biochemica, Sauerlach, Germany), and Pepino mosaic virus (PepMV) (DSMZ, Braunschweig, Germany). Total RNA was extracted from all plants and tested using reverse transcription (RT)-PCR with three pairs of specific primers: one pair designed to amplify 586 bp of the coat protein gene of CMV (CMV-F 5′-CCTCCGCGGATGCTAACTT-3′ and CMV-R 5′-CGGAATCAGACTGGGAGCA-3′) and the other two pairs to Tomato torrado virus (ToTV) that amplify 580 and 574 bp of the polyprotein (4) and coat protein (Vp23) (3) region of RNA2, respectively; and by dot-blot hybridization with a digoxygenin-labeled RNA probe complementary to the aforementioned polyprotein. The serological analysis for PVX, PVY, ToMV, TSWV, and PepMV were negative. ToTV was detected in all samples analyzed. Three of these samples were also positive for CMV by serological and molecular analysis. No differences in symptom expression were observed between plants infected with both viruses or with ToTV alone. RT-PCR products were purified and directly sequenced. BLAST analysis of one CMV sequence (GenBank Accession No. EU934036) showed 98% identity with a CMV sequence from Brazil (most closely related sequence) (GenBank Accession No. AY380812) and 97% with the Fny isolate (CMV subgroup I) (GenBank Accession No. U20668). Two ToTV sequences were obtained (GenBank Accession Nos. EU934037 and FJ357161) and showed 99% and 98% identities with the polyprotein and coat protein region of ToTV from Spain (GenBank Accession No. DQ388880), respectively. CMV is transmitted by aphids and is distributed worldwide with a wide host range (2), while ToTV is transmitted by whiteflies and has only been reported in tomato crops in Spain and Poland and recently on weeds in Spain (1). To our knowledge, this is the first time ToTV has been detected in Panama and the first report of CMV/ToTV mixed infection. References: (1) A. Alfaro-Fernández et al. Plant Dis. 92:831, 2008. (2) A. A. Brunt et al. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Online Publication, 1996. (3) H. Pospieszny et al. Plant Dis. 91:1364, 2007. (4) M. Verbeek et al. Arch. Virol. 152:881, 2007.


2003 ◽  
Vol 77 (20) ◽  
pp. 11016-11026 ◽  
Author(s):  
Kenji Kubota ◽  
Shinya Tsuda ◽  
Atsushi Tamai ◽  
Tetsuo Meshi

ABSTRACT Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L11 and L11A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L11A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed.


Author(s):  
Igor Forigo Beloti ◽  
Gabriel Mascarenhas Maciel ◽  
Igor Matheus Alves ◽  
Lucas Medeiros Pereira ◽  
Ernane Miranda Lemes

Zucchini (Cucurbita pepo L.) is a horticultural plant species of great socioeconomic value in tropical countries such as Colombia and Brazil. The production of zucchini is qualitatively and quantitatively affected by many diseases, especially viruses belonging to the Potyvirus (Zucchini yellow mosaic virus - ZYMV) and Comovirus (Squash mosaic virus - SqMV) groups. The primary strategy to reduce the spread of potentially damaging plant viruses is the development of genotypes with genetic tolerance; however, there are not many zucchini genotypes with multiple tolerance. Therefore, this study evaluated 66 zucchini genotypes to find sources of tolerance to the ZYMV and SqMV viruses. This experiment was conducted in a completely randomized design using genotypes from the germplasm bank of the Federal University of Uberlândia, including the genotypes: Emanuela (common commercial genotype) ‘Tronco Caserta’ (susceptible genotype) and PX 13067051 (resistant genotype). Leaf extracts containing viral particles were used as inoculant, and the distribution of grades of tolerance was recorded at the seedling stage. The lineages UFU-C×UFU-A#18#3;1, UFU-C×UFU-F#19#11;3, UFU-F#4#9;1, and UFU-D×UFU-F#7#21;1 and the Emanuela cultivar are alternatives for the production of new zucchini genotypes or hybrids with tolerance to the viruses ZYMV and SqMV. More severe symptoms were observed, as well as a larger number of susceptible genotypes for the ZYMV virus, indicating that this virus has great potential for causing damage and losses to zucchini crops.


Sign in / Sign up

Export Citation Format

Share Document