scholarly journals Bio-organic Fertilizer Promotes Plant Growth and Yield and Improves Soil Microbial Community in Continuous Monoculture System of Chrysanthemum morifolium cv. Chuju

2017 ◽  
Vol 19 (03) ◽  
pp. 563-568 ◽  
Author(s):  
Jianfei Wang ◽  
Xiaoliang Li ◽  
Suzhi Xing ◽  
Zhongyou Ma ◽  
Shuijin Hu ◽  
...  
Author(s):  
Aditi Sengupta ◽  
Priyanka Kushwaha ◽  
Antonia Jim ◽  
Peter A. Troch ◽  
Raina Maier

The plant-microbe-soil nexus is critical in maintaining biogeochemical balance of the biosphere. However, soil loss and land degradation are occurring at alarmingly high rates, with soil loss exceeding soil formation rates. This necessitates evaluating marginal soils for their capacity to support and sustain plant growth. In a greenhouse study, we evaluated the capacity of marginal incipient basaltic parent material to support native plant growth, and the associated variation in soil microbial community dynamics. Three plant species, native to the Southwestern Arizona-Sonora region were tested with three soil treatments including basaltic parent material, parent material amended with 20% compost, and potting soil. The parent material with and without compost supported germination and growth of all the plant species, though germination was lower than the potting soil. A 16S rRNA amplicon sequencing approach showed Proteobacteria to be the most abundant phyla in both parent material and potting soil, followed by Actinobacteria. Microbial community composition had strong correlations with soil characteristics but not plant attributes within a given soil material. Predictive functional potential capacity of the communities revealed chemoheterotrophy as the most abundant metabolism within the parent material, while photoheterotrophy and anoxygenic photoautotrophy were prevalent in the potting soil. These results show that marginal incipient basaltic soil has the ability to support native plant species growth, and non-linear associations may exist between plant-marginal soil-microbial interactions.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xu Zhang ◽  
Chao Xue ◽  
Dan Fang ◽  
Xiaohui He ◽  
Mengyu Wei ◽  
...  

AbstractFusarium wilt is a devastating disease which impacts watermelon production. Soil fumigation using dazomet followed by biological organic fertilizer was applied to suppress the Fusarium wilt disease. We propose that fumigation suppresses the soil indigenous community, especially the soil-borne pathogens, while the utilization of bio-organic fertilizer facilitates the recovery of the soil microbiome to a beneficial, suppressive state through the introduction of plant growth-promoting microorganisms. Greenhouse experiment showed that applied biological organic fertilizer after dazomet fumigation effective restrain the disease incidence with a 93.6% disease control. Fumigation strongly decreased soil microbial diversity and altered relative taxa abundances, suggesting the possibility of niche release by the resident soil microbial community. Fumigation followed by bio-fertilizer transformed the soil microbial community composition and resulted in higher relative abundances of beneficial microbial groups such as Bacillus (8.5%) and Trichoderma (13.5%), coupled with lower Fusarium abundance compared to other treatments. Network analysis illustrated that soil fumigation decreased interactions within the soil microbial community with less nodes and links while bio-fertilizer addition promoted node interactions. In addition, bio-fertilizer addition after fumigation resulted in the beneficial species becoming the key network connectors. Collectively, fumigation appears to release the resident soil niche resulting in lower diversity while the beneficial microbes introduced by bio-fertilizer addition colonize these niches, leading to a more complex community with fewer pathogens that suppresses Fusarium wilt disease incidence.


Small ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Mariya V. Khodakovskaya ◽  
Bong-Soo Kim ◽  
Jong Nam Kim ◽  
Mohammad Alimohammadi ◽  
Enkeleda Dervishi ◽  
...  

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1128C-1128
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Janice E. Thies

Apple (Malu ×domestica) replant disease (ARD) is a soil-borne disease syndrome of complex etiology that occurs worldwide when establishing new orchards in old fruit-growing sites. Methyl bromide (MB) has been an effective soil fumigant to control ARD, but safer alternatives to MB are needed. We evaluated soil microbial communities, tree growth, and fruit yield for three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and five clonal rootstocks (M7, M26, CG6210, CG30, and G16), in an apple replant site at Ithaca, N.Y. Molecular fingerprinting (PCR-DGGE) techniques were used to study soil microbial community composition of root-zone soil of the different soil treatments and rootstocks. Tree caliper, shoot growth, and yield were measured annually from 2002–04. Among the five rootstocks we compared, trees on CG6210 had the most growth and yield, while trees on M26 had the least growth and yield. Soil treatments altered soil microbial communities during the year after pre-plant treatments, and each treatment was associated with distinct microbial groups in hierarchical cluster analyses. However, those differences among fungal and bacterial communities diminished during the second year after planting, and soil fungal communities equilibrated faster than bacterial communities. Pre-plant soil treatments altered bulk-soil microbial community composition, but those shifts in soil microbial communities had no obvious correlation with tree performance. Rootstock genotypes were the dominant factor in tree performance after 3 years of observations, and different rootstocks were associated with characteristic bacterial, pseudomonad, fungal, and oomycetes communities in root-zone soil.


2018 ◽  
Vol 6 (4) ◽  
pp. 49
Author(s):  
Solomon A. Adejoro ◽  
Ajoke C. Adegaye ◽  
Doyinsola S. Sonoiki

The toxicity of nicosulfuron to none target organisms is its downside, which has generated concerns about the herbicide in spite of its high herbicidal activity. Practices that would facilitate accelerated degradation of this herbicide will certainly be complementary to its use. A completely randomized design laboratory incubation experiment was carried out to examine the potentials of organic and mineral fertilizers to stimulate microbial activities in soil under the influence of the nicosulfuron herbicide. Soil contaminated with the field rate of nicosulfuron was separately amended with compost and NPK mineral fertilizer, and the treated samples were incubated for 56 days at room temperature. Soil microbial activity and microbial biomass C were measured in dynamics for the period of incubation. Eco-physiological quotients were also computed at the end of incubation to determine responses of soil microbes at the community level to the treatments. Application of nicosulfuron alone was found to repress both microbial biomass and microbial activity. Addition of fertilizer however caused these parameters to increase especially during the first 28 days after treatment application. The microbial metabolic quotient was raised by the soil amendments shortly after application with the exemption of NPK treated soil. However, only the soil samples in which compost was present lowered qCO2 at the termination of the experiment. NIC-COMP and NIC-NPK respectively raised and lowered the soil carbon mineralization quotient (qM) measured at the end of incubation. The soil microbial community was also found to be positively affected by the addition of fertilizers as indicated by the Cmic: Corg ratio and the microbial biomass change rate quotient (qC). It was therefore concluded that though the nicosulfuron herbicide at the field recommended rate has potentials to negatively affect the soil microbial community, application of organic fertilizer may help the soil to regain its microbial competence through enhanced degradation engendered by biostimulation of native microorganisms.


Sign in / Sign up

Export Citation Format

Share Document