scholarly journals Hull form Development of Algeria Trawl fishing boat using CWC model test and CFD analysis

2009 ◽  
Vol 11 (2) ◽  
pp. 15-21
Author(s):  
김현수
2021 ◽  
Vol 163 (A3) ◽  
Author(s):  
Thu Han Tun ◽  
Ye Thet Htun ◽  
Aung Khaing Min

In designing submarines, hull form selection, resistance, and powering are key aspects. The bare hull form of a submarine can be considered according to five parameters. Surface resistance is important should it be necessary to operate at relatively high Froude Numbers. Due to the complex nature of the flow around the hull, model experiments are still the most reliable approach to determining surface resistance. CFD simulations enable surface condition analysis using FINEMarine. The towing mechanism must be taken into account and so this was designed to fix the pitch motion and measure the hydrodynamic forces. This paper outlines the towing method, comparing the model test and the CFD results, as well as providing a comparison of wave formation from the towing test and the CFD results. The results show that resistance increased significantly above a model speed of 1.4 m/s. Furthermore, above this speed, as the resistance of the model rose, the downforce gradually decreased.


2007 ◽  
Vol 44 (02) ◽  
pp. 125-137
Author(s):  
Muhsin Aydin ◽  
Aydin Salci

In the present paper, first 13 hull forms of fishing boats with different block coefficients were generated. Later, 26 hull forms of fishing boats with two different ratios of length to beam were generated by utilizing previous hull forms of fishing boats mentioned. In total, 39 fishing boats were generated. This series is called "Fishing Boats Series of ITU" (Istanbul Technical University). In this Series, the forms of the body stations and beams of the boats are the same for equal block coefficient and different lengths. The ratio of the beam of any station at any waterline to the beam of boat, Bz/B varies with respect to block coefficient, CB. These variations have been represented with the third-degree polynomials. Thus, a hull form of the fishing boat in the desired length and block coefficient can be obtained by using these polynomials. For this purpose, a computer program called "Turetme" was developed. Finally, by using this program, three hull forms of fishing boats were obtained and presented here.


2021 ◽  
Vol 4 ◽  
pp. 1-7
Author(s):  
Wolter R Hetharia ◽  
Eliza R De Fretes ◽  
Reico H Siahainenia

The operation of fishing vessels skipjack pole and line contributes in catching tuna and skipjack fishes particularly in Indonesian waters. A previous study conducted by the authors found that there was no suitable method provided for the resistance computation atearly ship design phase. Besides, there was aninitial trim existed on the vessel during the operation which contributes for the resistance. The purpose of the study is to find the difference of resistance between the model test and the existing methods. The study was executed also to find the effect of initial trim of the vessel. The study began with collecting the database of a parent ship then to develop and transform into a model-scale for testing purpose in the towing tank. The results of model test were converted to the full-scale vessel. The resistance of full-scale vessel was computed based on the Holtrop and Guldhammer methods. The result of full-of resistance obtained from the model test and the methods were collected, evaluated and compared. The results showed the difference of the resistance for all methods. The result of model test is greater 21 % than that of Holtrop method at the service speed of 10 knots. Meanwhile, the result of model test is lower 14 % than that of Gulhammer method at the same speed. In addition, at the speed of 10 knots the initial trim of 0.5O increase 5 % ofthe resistance, the initial trim of 1O increase 10 % of resistance and the initial trim of 2O increase 16 % of resistance compared to the vesselwithout initial trim. In conclusion, the existing resistance methods are not suitable to be applied for skipjack pole and line fishing vessels. In addition, the initial trim contributes to increase the resistance and should be avoided during the vessel operation.


2021 ◽  
Vol 9 (8) ◽  
pp. 854
Author(s):  
Su-Hyung Kim ◽  
Chun-Ki Lee

Most fishing vessels are less than 100 m in length between the perpendiculars, for which adherence to the International Maritime Organization maneuverability standards are not mandatory. In the design stage of fishing vessels, maneuverability is estimated using empirical formulas—mainly analytical methods—rather than costly and time-consuming model tests. However, the empirical formula is developed through the process of regression analysis on the model test results from merchant ships’ hull form and applying the same to the fishing vessels’ hull form may result in an estimation error due to the differences in the vessels’ characteristics—e.g., L/B, B/d and Cb·B/L—. In a previous study, the authors of this paper derived a modified empirical formula by adding the hull form parameters of trawl fishing vessels to the existing empirical formula based on those of merchant ships. This study analyzes the validity of the modified empirical formula in depth by applying it to a newly-built training vessel that has the hull form of a trawl fishing vessel. As a result of the study, the estimation results were improved by including the parameters of the hull form of trawl fishing vessels in the empirical formula developed for merchant ships.


Sign in / Sign up

Export Citation Format

Share Document