scholarly journals The Effect of Bioregulators Isolated from Blood Serum and Cornea of the Bovin’s Eye on the Condition of Tissue and Cells of the Rabbit Corneas during Cultivation and Storage

2021 ◽  
Vol 18 (3) ◽  
pp. 488-494
Author(s):  
M. S. Krasnov ◽  
V. P. Yamskova

Objective: to study the condition of the cornea, as well as its epithelial and endothelial cells, while maintaining in vitro at various temperature conditions, under the influence of a number of factors, including bioregulators isolated from blood serum and cornea of the bovine, and epidermal growth factor.Methods. The study was carried out on rabbit corneas stored at temperatures of +4, –86 °C, as well as the cultivation of endothelial and epithelial cells isolated from the cornea after storage at these temperatures, followed by histological and immunohistochemical studies.Results. Storage of the cornea at +4 °C for 10 days leads to corneal edema and significantly reduces their transparency, both bioregulators partially prevent a decrease in the transparency of the cornea, while the endothelial layer lyses in groups with the addition of epidermal growth factor and corneal bioregulator; but remains in the cornea with the addition of a serum bioregulator. All three factors contribute to the preservation of the Bowman membrane. In the corneas stored at –86 °C on the 30th day, a preserved endothelial layer was observed, and the epithelium retained its multilayering in all groups with the addition of factors other than the control group. In the control samples, the epithelial layer partially exfoliated, the endothelial layer was almost completely lysed. Both bioregulators stimulated the proliferation of cells isolated from the native cornea and enhanced the action of the epidermal growth factor. Similar results were obtained on cells isolated from stored corneas for 2 weeks at –86 °C. In the case of combined use of the epidermal growth factor and bioregulators on the 30th day, the endothelial layer was mainly preserved, the Descemet’s membrane was not broken. In the control samples, the epithelium was mainly single-layered, partially exfoliated, and the endothelial layer was completely lysed.Conclusion. Storage of cornea during hypothermia (+4 °С) does not provide corneal viability for longer than 10 days. Storage under conditions of cryopreservation (–86 °C) ensures the viability of the cornea for 60 days. Adding bioregulators and an epidermal growth factor to the basic preservation medium allows one to obtain a structurally safe and viable cornea, while all cellular layers of the cornea, including the endothelial layer, are preserved and viable.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-327
Author(s):  
Ekaterina Shedova ◽  
Galina Singina ◽  
Irina Y Lebedeva ◽  
Aleksandr Lopukhov

Abstract The evaluation of factors responsible for the protection of the oocytes attained the metaphase-II stage from aging is importance for successful in vitro embryo reproduction. The aim of the present research was to study dose-dependent effects of epidermal growth factor (EGF) and prolactin (PRL) on the quality of bovine oocytes after their aging in vitro. Bovine cumulus-enclosed oocytes (CEOs) were matured in vitro for 20 h in TCM 199 containing 0.2 mM sodium pyruvate, 10% fetal calf serum (FCS), 10 μg/ml FSH and LH. At the end of in vitro maturation, oocytes were transferred to TCM 199 supplemented with 10% FCS (aging medium) and cultured for additional 24 h in the absence (Control) and in presence of EGF (10 and 50 ng/ml) and PRL (20 and 50 ng/ml). After prolonged culture oocytes were used for apoptosis detection (TUNEL staining, n=251) and the state of chromosomes evaluation (Tarkowski’s cytogenetic method, n=359). The data from 3–4 replicates were analyzed by ANOVA. At the end of prolonged culture (24 h) the rate of apoptotic oocytes in the Control group was 47.4±8.5%. EGF at concentration of 10 ng/ml and PRL at both doses decreased this rate to 15.0–22.1% (p < 0.05). Furthermore, PRL (not EGF) reduced the frequency of abnormal chromosome modifications (decondensation, adherence, clumping) at concentrations of 20–50 ng/ml from 58.7±2.1% (Control) to 41.2±1.9 and 45.6±2.7% respectively (p < 0.01). Thus, EGF and PRL is able to maintain the apoptosis resistance of bovine oocytes during their prolonged in vitro culture as well as PRL have the decelerating effect on abnormal modifications of M-II chromosomes. The research was supported by RFBR (17-29-08035) and the Ministry of Science and Higher Education of Russia.


2006 ◽  
Vol 18 (2) ◽  
pp. 279
Author(s):  
H.-J. Song ◽  
S.-H. Lee ◽  
G.-H. Maeng ◽  
J.-G. Kim ◽  
S. Balasubramanian ◽  
...  

Despite many efforts to improve canine in vitro maturation (IVM), the efficiency is still low compared to that of other mammalian species (Marie et al. 2004). Epidermal growth factor (EGF) has stimulatory effects on the resumption of oocyte maturation and cumulus expansion in vitro and on prei-mplantation embryonic development in mammals by either an autocrine or a paracrine pathway, or a combination of both systems (Paria et al. 2001 PNAS 98, 1047-1052). The present study investigated the effects of EGF supplementation on in vitro maturation and gene expression of canine oocytes. Oocytes were recovered by slicing ovaries recovered from 40 bitches after ovariohysterectomy at random stages of the estrous cycle. Cumulus-oocyte complexes (COCs) were matured in TCM-199 containing 10% FBS, 1 �g/mL FSH and LH, and EGF (0, 10, or 30 ng/mL) for 48 or 72 h at 39�C in a humidified atmosphere of 5% CO2 in air. In Experiment I (n = 2520 oocytes), the nuclear maturation status was assessed by fluorescence microscopy after bisbenzimide (Hoechst 33342) staining (10 �g/mL) at 0, 48, and 72 h of incubation. In Experiment II (n = 90 oocytes), expression of transcripts such as EGF receptor (EGFR), luteinizing hormone receptor (LHR), and gap junction protein (GJA5) were determined in 10 intact COCs each at 0, 48, and 72 h, respectively, by reverse transcription-polymerase chain reaction (RT-PCR). At 0 h 10-20% of the oocytes had undergone resumption of meiosis (GVBD<MII). After 48 h of IVM, rate of meiotic resumption for 0, 10, and 30 ng/mL EGF were 28, 35, and 30%, respectively. At 72 h of IVM, oocytes in the 10 ng/mL EGF group had resumed meiosis at a higher frequency (55%; P < 0.05) than in the 30 ng/mL EGF or the control group (39 and 42%, respectively). At 72 h of IVM, the frequency of maturation to the MII stage was significantly higher in the 10 ng/mL EGF group (9.6%) than in the 30 ng/mL EGF or the control group (4.2 and 3.3%, respectively). The expression of EGFR was significantly higher (P < 0.05) in 0 h oocytes than in the 48- or 72-h oocytes. Further EGFR expression levels were decreased in the presence of EGF in a dose dependent manner. Transcripts for LHR were detected at all maturation intervals and its expression patterns were not altered by supplementation with 10 ng/mL EGF. Expression of GJA5 was observed only after 48 h of IVM, and levels of expression were similar in oocytes supplemented with both 10 and 30 ng/mL EGF. In summary, our results indicate that supplementation of canine IVM medium with 10 ng/mL EGF had a positive influence on the progression of maturation to MII at 72 h. The effect may not be related to the alteration of mRNA expression of genes analyzed in the present study, due to the complex patterns regulating meiotic arrest in canine oocytes. This work was supported by Grant no. 204119-03-1-LG000 from ARPC, Republic of Korea.


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 255-258
Author(s):  
Faisal A. Alzahrani

SummaryThis study aimed to optimize the derivation of trophectoderm from in vitro-produced camel embryos under feeder-free culture conditions using the basement membrane matrix Matrigel. Trophoblastic vesicles were obtained through mechanical microdissection of in vitro-produced camel (Camelus dromedarius) embryos. Supplementing the culture medium with 10 ng/ml of epidermal growth factor and 10 ng/ml fibroblast growth factor improved the attachment and subsequent outgrowths of cultured trophoblastic vesicles when compared with the control group and the groups supplemented individually with each growth factor. The expression levels of pluripotency genes octamer-binding transcription factor 4 (Oct4), sex determining region Y-box 2 (Sox2), myelocytomatosis proto-oncogene (c-Myc) and anti-apoptotic gene B-cell lymphoma 2 (Bcl2) were increased in trophoblastic vesicles supplemented with both growth factors when compared with the control group. Conversely, both growth factors decreased the expression of apoptotic genes tumour protein p53 (p53) and Bcl-2-associated X protein (Bax). To the best of our knowledge, this may be the first report describing the derivation of trophoblast stem cells from in vitro-produced camel embryos.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


Author(s):  
Nuria Hernández ◽  
Marta López-Morató ◽  
Mario J Perianes ◽  
Soledad Sánchez-Mateos ◽  
Vanessa Casas-Rua ◽  
...  

Abstract Embryo implantation in the uterus is a critical step to achieve success following ART. Despite favorable uterine conditions, a great number of good quality embryos fail to implant, often for reasons that are unknown. Hence, improving the implantation potential of embryos is a subject of great interest. 4-Hydroxyestradiol (4-OH-E2), a metabolic product of estradiol produced by endometrial cells, plays a key role in endometrial–embryonic interactions that are necessary for implantation. Nonetheless, the effects of 4-OH-E2 on embryos obtained in vitro have not been yet described. This study was designed to determine whether culture media enriched in 4-OH-E2 could improve the quality and implantation rate of embryos obtained in vitro, using both in vitro and in vivo models. We also analyzed its effects on the epidermal growth factor (EGF)-binding capability of the embryos. Our results showed that the presence of 4-OH-E2 in the culture media of embryos during the morula to blastocyst transition increases embryo quality and attachment to endometrial cells in vitro. 4-OH-E2 can also improve viable pregnancy rates of mouse embryos produced in vitro, reaching success rates that are similar to those from embryos obtained directly from the uterus. 4-OH-E2 improved the embryos’ ability to bind EGF, which could be responsible for the increased embryo implantation potential observed. Therefore, our results strongly suggest that 4-OH-E2 is a strong candidate molecule to supplement human IVF culture media in order to improve embryo implantation. However, further research is required before these findings can be translated with efficacy and safety to fertility clinics.


Sign in / Sign up

Export Citation Format

Share Document