scholarly journals ELECTRO-MECHANICAL IMPEDANCE BASED SHM OF THICK STRUCTURES IN BROAD-BAND FREQUENCY SPECTRUM

Author(s):  
Mesut TEKKALMAZ
Author(s):  
Sumit Kumar ◽  
Amruta S. Dixit

Abstract This paper presents a dual-band 1 × 4 antipodal Vivaldi antenna (AVA) array with high gain to operate over a dual-frequency band that covers the 5G frequency spectrum. The gain is enhanced by employing a dielectric lens (DL). The AVA array consists of four radiating patch elements, corrugations, DL, and array feeding network on the top side. The bottom side contains four radiating patches which are the mirror images of top radiating patches. The designed AVA contains 1 × 4 array antenna elements with a DL that is operating in the ranges of 24.59–24.98 and 27.06–29 GHz. The dimensions of the designed antenna are 97.2 mm × 71.2 mm × 0.8 mm. For the improvement in gain and impedance matching at the dual-band frequency, corrugation and feeding network techniques are used. The gain obtained is about 8–12 dBi. AVA array is tested after fabrication and the measured results are reliable with the simulation results.


1998 ◽  
Vol 46 (12) ◽  
pp. 2244-2250 ◽  
Author(s):  
P. Akkaraekthalin ◽  
S. Kee ◽  
D.W. Van Der Weide
Keyword(s):  

Author(s):  
A.M. Zolot ◽  
F.R. Giorgetta ◽  
E. Baumann ◽  
W.C. Swann ◽  
I. Coddington ◽  
...  

2021 ◽  
Author(s):  
Georg Woltersdorf ◽  
Rouven Dreyer ◽  
Niklas Liebing ◽  
Chris Körner ◽  
Martin Wagener

Abstract Frequency multiplication is a process where harmonic multiples of the input frequency are generated. It is usually achieved in non-linear electronic circuits or transmission lines. Such elements enable the up-conversion of electronic signals to GHz frequencies and are essential for frequency synthesizers and communication devices. Circuits based on the propagation and interaction of spin waves are a promising alternative to conventional electronics. Unfortunately, these systems usually require direct driving in the GHz range as magnonic frequency up-conversion is restricted to a few harmonics only. Here we show that the ferromagnetic material itself can act as a six octave spanning frequency multiplier. By studying low frequency magnetic excitations in a continuous ferromagnetic layer we show that the non-linearity of magnetization dynamics combined with disorder in the ferromagnet leads to the emergence of a dynamic phase generating high harmonics. The demonstrated broad band frequency multiplication opens exciting perspectives for magnonic and spintronic applications since the frequency is up-converted from MHz into GHz frequencies within the magnetic medium itself. Due to the ease at which magnetic media can be structured and modified spatially (and reversibly) we anticipate that a tailored non-linear dynamic phase can be engineered e.g. to stabilize magnetic solitons.


2021 ◽  
Vol 873 (1) ◽  
pp. 012077
Author(s):  
E. Fernanda ◽  
A. Bilqis ◽  
L. Julio ◽  
K. Nursal ◽  
Y. H. Christ ◽  
...  

Abstract The arc magmatism and volcanic activity in Java are dominated by the subducting plate of Indo-Australian into the Eurasian plate. Merapi volcano is located in Central Java and known as one of the most active volcanoes in the world. Several studies have tried to estimate the magma reservoir zone in Mt. Merapi and suggested multiple layers of reservoirs with the shallow one at 1-2 km and a deeper at 6 -9 km or 15 km. The Low-Frequency Passive Seismic is one method to analyze the frequency spectrum below the recording station. Previous related studies show a promising a relation between hydrocarbon reservoir and higher amplitude at vertical component at a frequency between 0.1 – 6 Hz. An observation at the volcano sites have also been reported to display a different spectrum amplitude at the vertical component. This study exploited the same method in LFPS to analyze the frequency spectrum at Mt. Merapi and Mt. Merbabu. We use seismic data from the DOMERAPI temporary seismic network installed in the neighborhood of Merapi and Merbabu volcano. We analyze 53 broad-band seismometers data from October 2013 to mid-April 2015. We also add several stations from MERAMEX network instruments to compare spectrum analysis outside the Merapi and Merbabu volcano. We also removed some tele-seismic and regional events from the data to better analyze the LFPS signal. We have seen a higher amplitude in vertical component near Mt. Merapi and will proceed to analyze all stations.


Sign in / Sign up

Export Citation Format

Share Document