Design of a high-gain dual-band antipodal Vivaldi antenna array for 5G communications

Author(s):  
Sumit Kumar ◽  
Amruta S. Dixit

Abstract This paper presents a dual-band 1 × 4 antipodal Vivaldi antenna (AVA) array with high gain to operate over a dual-frequency band that covers the 5G frequency spectrum. The gain is enhanced by employing a dielectric lens (DL). The AVA array consists of four radiating patch elements, corrugations, DL, and array feeding network on the top side. The bottom side contains four radiating patches which are the mirror images of top radiating patches. The designed AVA contains 1 × 4 array antenna elements with a DL that is operating in the ranges of 24.59–24.98 and 27.06–29 GHz. The dimensions of the designed antenna are 97.2 mm × 71.2 mm × 0.8 mm. For the improvement in gain and impedance matching at the dual-band frequency, corrugation and feeding network techniques are used. The gain obtained is about 8–12 dBi. AVA array is tested after fabrication and the measured results are reliable with the simulation results.

2013 ◽  
Vol 427-429 ◽  
pp. 1289-1292
Author(s):  
Yan Zhong Yu ◽  
Hua Nan Yang ◽  
Zhong Yi Huang

With the rapid development of RFID (radio frequency identification) application, the design requirements of RFID tag antenna are also increasing. A design of dual-frequency or multi-frequency tag antenna has become fashionable. In the present paper, we design a dual-band RFID tag antenna, which consists of a bent microstrip patch and rectangular microstrip patch. The designed antenna is analyzed and optimized by HFSS13. Simulation results indicate that the tag antenna has the characteristics of double band, high gain, and good radiation pattern.


2020 ◽  
Vol 10 (7) ◽  
pp. 2429 ◽  
Author(s):  
Li Hui Dai ◽  
Chong Tan ◽  
Yong Jin Zhou

Stable radiation pattern, high gain, and miniaturization are necessary for the ultra-wideband antennas in the 2G/3G/4G/5G base station applications. Here, an ultrawideband and miniaturized spoof plasmonic antipodal Vivaldi antenna (AVA) is proposed, which is composed of the AVA and the loaded periodic grooves. The designed operating frequency band is from 1.8 GHz to 6 GHz, and the average gain is 7.24 dBi. Furthermore, the measured results show that the radiation patterns of the plasmonic AVA are stable. The measured results are in good agreement with the simulation results.


2015 ◽  
Vol 9 (2) ◽  
pp. 341-348 ◽  
Author(s):  
Jin Zhang ◽  
Xianqi Lin ◽  
Jiawei Yu ◽  
Liying Nie

Patch antennas with a meandering slot and different distributions of grounded metallic vias are presented in this paper. The meandering slot is adopted to stimulate dual-band operation, while the number and position of the grounded metallic vias are suggested to achieve different radiation performances. The characteristics are analyzed in detail where we find that the existence of the vias also improves the impedance matching. Four samples are designed, where dual-band with both linear polarization, dual-band with circular- and linear-polarization, and single band with linear polarization are obtained, respectively. The samples are finally fabricated and the measurement results agree well with the simulation results.


Low Noise Amplifier (LNA) plays an important role in radio receivers. It mainly determines the system noise and intermodulation behavior of overall receiver. LNA design is more challenging as it requires high gain, low noise figure, good input and output matching and unconditional stability. Further, designing a Low noise Amplifier requires active device selection, amplifier topology, optimization algorithms for superlative results. Hence this paper presents performance analysis of CMOS LNA based on different topologies and optimization algorithms for 180nm RF CMOS design in S band frequency. Here the best results, various limitations in each topology are reviewed and required specifications are determined in each designing. Further this best topology is used for designing LNA circuit which could be used in Indian Regional Navigation Satellite System (IRNSS) applications in dual band frequency.


Author(s):  
Ajit Chandramohan Yadav ◽  
Shafiyoddin Badroddin Sayyad

This article demonstrates the coplanar waveguide (CPW) feed L- slot microstrip antenna for multi frequency band operation is presented. The proposed antenna is excited by a single CPW feed connected to a Microstrip antenna. In this radiating patch and feed are etched on the same dielectric material. A SMA connector is used to connect the feed strip which couples the energy to a radiating patch by capacitive feed. The length and width are designed to obtained dual band frequency range. A truncation is used for multiband operations and for proper impedance matching. L- slot is used to increase the depth of S11 parameter. 


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 503
Author(s):  
Hai-Han Sun ◽  
Yee Hui Lee ◽  
Wenhao Luo ◽  
Lai Fern Ow ◽  
Mohamed Lokman Mohd Yusof ◽  
...  

A compact ultra-wideband dual-polarized Vivaldi antenna is proposed for full polarimetric ground-penetrating radar (GPR) applications. A shared-aperture configuration comprising four Vivaldi elements for orthogonal polarizations is designed to reduce the low-end operating frequency and improve the port isolation with a compact antenna size. The directivity of the antenna is enhanced by the oblique position of the radiators and the implementation of a square loop reflector. Experimental results demonstrate that the antenna has very good impedance matching, port isolation, and dual-polarized radiation performance, with low dispersion characteristics across band of interest from 0.4 GHz to 3.0 GHz. GPR measurements with the designed antenna show that the antenna maintains good detection capability even for objects buried in a highly conductive soil.


In this paper, a rectangular patch antenna with slits for dual band capabilities is presented. The suggested antenna works for two frequencies which are at 2.5 GHz and 5.1 GHz. The first operating frequency is in the band of 2.3 to 2.7GHz with -16.8dB reflection coefficient at 2.5GHz resonating frequency, whereas the second band is 4.6 to 5.5GHz with -29.2dB reflection coefficient at 5.1GHz resonating frequency. The simulation results exhibit that, the suggested antenna works for dual band frequency having impedance bandwidth of 482 and 844 MHz respectively. The gain is observed as 2.9 dBi and 4.2 dBi of respective bands. The first frequency band can be used for Industrial, Scientific and Medical(ISM) applications and second frequency band can be used for C-band applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sika Shrestha ◽  
Seong Ro Lee ◽  
Dong-You Choi

The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS), the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR) is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.


2017 ◽  
Vol 32 (4) ◽  
pp. 403-412 ◽  
Author(s):  
Denghui Huang ◽  
Hu Yang ◽  
Yuqing Wu ◽  
Fei Zhao ◽  
Xiang Liu

Sign in / Sign up

Export Citation Format

Share Document