scholarly journals Adhesive Friction Based on Accurate Elastic-Plastic Finite Element Analysis and n-Point Asperity Concept

2017 ◽  
Vol 11 ◽  
pp. 1-28
Author(s):  
Ajay K. Waghmare ◽  
Prasanta Sahoo

The present work considers analysis of adhesive friction of rough surfaces using n-point asperity concept for statistical definition of surface roughness features, and accurate finite element analysis of elastic-plastic deformation of single asperity contact. The paper describes theoretical study in which whole range of deformation of an n-point asperity viz. from fully elastic, through elastic-plastic, to fully plastic is considered and the intermediate transition regime is treated analytically as well as numerically. Well defined adhesion index and plasticity index are used to study the prospective contact situations arising out of variation in material properties and surface roughness features. Using practical values of material properties and surface roughness parameters, results are obtained for normally applied load, friction force, and coefficient of friction. It is observed that the surfaces undergoing predominantly plastic type of deformation and having moderate to higher adhesion have constant coefficient of friction.

Author(s):  
John Moody ◽  
Itzhak Green

This work presents the results from a three dimensional (3D) finite element analysis (FEA) of an elastic-plastic asperity contact model for two spherical bodies sliding across each other with various preset vertical interferences. Stresses, forces, contact areas, deformations, and net energy loss are presented for steel-on-steel and aluminum-on-copper contact.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


Sign in / Sign up

Export Citation Format

Share Document