scholarly journals Influence of Fe3+ Ion Substitution on Thermal and Dielectric Properties of Titanium Dioxide

Author(s):  
Shirajahammad M. Hunagund ◽  
Pradeep Chavan ◽  
Vani R. Desai ◽  
L.R. Naik ◽  
Jagadish S. Kadadevarmath ◽  
...  

Thermal and dielectric characteristics of Fe2O3doped TiO2(FDT) nanopowder is investigated. Formation of FDT was prepared using the formula [1-x] TiO2+ [x] Fe2O3by solid state reaction method. The Surface morphology was studied using atomic force microscopy (AFM) technique; it reveals the average particle size in the range of 180 to 200nm. FT-IR analysis reveals weak transmittance bands between 1020 to 1650 cm-1and 2800 to 3500 cm-1which shows a gradual decrease in peak intensities with an increase of Fe concentration. Thermal stability was assessed by Thermogravimetric analysis (TGA). Results of TGA Profiles indicate that all FDT nanopowder was found to be thermally stable between 400 °C to 600 °C. The dielectric behavior of the said composite has been investigated as a function of frequency (20 Hz - 1 MHz) at room temperature and it is observed that the dielectric constant decreases with increasing frequency indicating dispersion behavior.

2021 ◽  
Vol 11 (4) ◽  
pp. 12186-12201

The inhibition impact of Plantago major leaves extract on carbon steel (CS) which immersed in 0.5 M H2SO4 media was ‎investigated by several methods such as mass loss method (ML), electrochemical impedance spectroscopy (EIS), potentiodynamic ‎polarization (PDP), and electrochemical frequency modulation‎ (EFM). Data obtained from different measurements was showed that %IE enhanced with added the Plantago major extract doses also increased with increasing temperature degree. Thermodynamic adsorption and kinetic parameters of the system were also measured and studied. The ‎adsorption of the Plantago major extract on CS is, according to Temkin isotherm. The ‎ curves from PDP explained that the Plantago major extract is considered as a mixed-type inhibitor. The EIS technique's acquired data verified that the studied extract produced a thin layer that covers and protects the CS surface. Atomic ‎Force Microscopy (AFM) and Fourier Transform Infrared (FT-IR) analysis conformed that Plantago major extract was adsorbed on CS surface. The data obtained from unlike measurements were in good accord.


2019 ◽  
Vol 11 (22) ◽  
pp. 64-71
Author(s):  
Rawaa A. Faris

     Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an optical limiter. The experiments were performed using Q-switched Nd:YAG laser at 532nm and 1064 nm at different intensities. Copper oxide thin films appear to be attractive candidates for optical limiting application and sensor application.


2019 ◽  
Vol 16 (1) ◽  
pp. 0199
Author(s):  
Khalil Et al.

Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and  10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where they indicated that sensitivity reached 42.566% at 300 oC, spectral response time less than 52.2 s and recovery time 135.9 s.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1285 ◽  
Author(s):  
Andrei Trofimuk ◽  
Diana Muravijova ◽  
Demid Kirilenko ◽  
Aleksandr Shvidchenko

Detonation nanodiamond is a commercially available synthetic diamond that is obtained from the carbon of explosives. It is known that the average particle size of detonation nanodiamond is 4–6 nm. However, it is possible to separate smaller particles. Here we suggest a new approach for the effective separation of detonation nanodiamond particles by centrifugation of a “hydrosol/glycerol” system. The method allows for the production of the detonation nanodiamond hydrosol with a very sharp distribution in size, where more than 85% of particles have a size ranging 1–4 nm. The result is supported by transmission electron microscopy, atomic force microscopy, and dynamic light scattering.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yang Jiang ◽  
Jing Du ◽  
Honglin Tang ◽  
Xin Zhang ◽  
Wenbin Li ◽  
...  

The nanomagnetic carrier (Fe3O4@SiO2@p(GMA)) was prepared by atom transfer radical polymerization, and then, the free phospholipase C (PLC) was immobilized on it proved by the results of FT-IR analysis. The enzyme loading was 135.64 mg/g, the enzyme activity was 8560.7 U/g, the average particle size was 99.86 ± 0.80 nm, and the specific saturation magnetization was 16.00 ± 0.20 emu/g. PLC-Fe3O4@SiO2@p(GMA) showed the highest activities at the pH of 7.5, and tolerance temperature raised to 65°C in soybean lecithin emulsion. Enzymatic degumming with PLC-Fe3O4@SiO2@p(GMA) under the conditions of the enzyme dosage of 110 mg/kg, reaction temperature of 65°C, pH of 7.5, and reaction time of 2.5 h resulted in residual phosphorus of 64.7 mg/kg, 1,2-diacylglycerol (1,2-DAG) contents of 1.07%, and oil yield of 98.1%. Moreover, PLC-Fe3O4@SiO2@p(GMA) still possessed more than 80% of its initial activity after 5 cycles.


2019 ◽  
Vol 16 (1(Suppl.)) ◽  
pp. 0199 ◽  
Author(s):  
Khalil Et al.

Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and  10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where they indicated that sensitivity reached 42.566% at 300 oC, spectral response time less than 52.2 s and recovery time 135.9 s.


2020 ◽  
pp. 266-276
Author(s):  
Rand Ali ◽  
Zainab Jassim ◽  
Ghada Muhammad Saleh ◽  
Quraysh Abass

     Magnesium oxide nanoparticles (MgO NPs) were synthesized by a green method using the peels of Persimmon extract as the reducing agent , magnesium nitrate, and NaOH. This method is eco-friendly and non-toxic. In this study, an ultrasound device was used to reduce the particle size, with the impact on the energy gap was set at the beginning at 5.39 eV and then turned to 4.10 eV. The morphological analysis using atomic force microscopy (AFM)  showed that the grain size for MgO NPs was 67.70 nm which became 42.33 nm after the use of the ultrasound. The shape of the particles was almost spherical and became cylindrical.  In addition the Field-Emission Scanning Electron Microscopy (FESEM) analysis showed that the average particle size was reduced and the spherical shape was changed into cylindrical flakes. The antibacterial activity of MgO Nps was measured against both gram positive and negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) for both the synthesized and the scaled-down particles by the ultrasonic. MgO NPs showed an efficacy at a minimum inhibitory concentration (MIC) of 500 μg/ml, with the better effect being observed after the ultrasonic treatment of the MgO NPs.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012012
Author(s):  
A H Mohammed ◽  
A N Naje

Abstract Simple process (exploding wire technique) was used to Prepared sliver nanoparticles (AgNPs). The graphene sheet was added to AgNPs with different concentrations (0.002g/ml and 0.01g/ml). well dispersion of AgNPs are achieved by simple chemistry process. The samples were characterized by ultraviolet-visible spectroscopy (UV-Vis), x-ray diffraction (XRD), atomic force microscopy (AFM) and Field emission scanning electron microscope (FESEM). The results showed a wide band absorption of AgNPs-graphene (AgNPs-GN) extended from VU to IR region, surface plasmon resonance (SPR) absorption peak position for the AgNPs at (350-600) nm, XRD confirmed the clear distribution of the peaks attributed to polycrystalline for AgNPs appeared at 20=38.14°, 44.27°, 64.33, and 77.37° respectively and AgNPs-GN at 2θ=26.51° and 54.65°. The AFM showed that AgNPs have uniformly distribution on the surface of graphene sheet. The average size of AgNPs was confirmed by around (50-80) nm by FESEM and the AgNPs-GN have average particle size (20-40) nm. The AgNPs-GN could become prominent candidate for optoelectronic applications.


2012 ◽  
Vol 9 (3) ◽  
pp. 1336-1341
Author(s):  
Joghee Suresh ◽  
Raja Gopal Rajiv Gandhi ◽  
Sundaram Gowri ◽  
Samayanan Selvam ◽  
Mahalingam Sundrarajan

Nanosize Polyreactive blue MXR dye was synthesized from reactive blue MXR dye in presence of potassium persulfate as catalyst. The formation of polyreactive blue MXR was indicated by colour change from blue to brown. The characterization techniques such as, Fourier transform infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffractrometry (XRD) were used to characterize the formation of nanosize polyreactive blue MXR. The absence of asymmetric stretching of NH2 group in polymer dye FTIR spectrum confirmed the polymerization of dye was occurring. The average particle size of the polymer dye was found to be 18.11 nm according to Scherer formula.AFM analysis shows the three dimensional structure of polyreactive blue MXR.


2015 ◽  
Vol 60 (2) ◽  
pp. 1251-1255
Author(s):  
J.H. Kim ◽  
J.-H. Lee

AbstractIn order to fabricate graphite nanosheets from graphite flakes, edge-functionalized graphite nanosheets were prepared by a functionalization method using phthalic acid as the molecule to be grafted. A polyphosphoric acid/P2O5solution containing graphite and phthalic acid were heated at different temperatures for 72 h in a nitrogen atmosphere. It was confirmed by transmission electron microscopy and atomic force microscopy that the resultant phthalic acid-functionalized graphite nanosheets had a large surface area of 20.69μm2in average and an average thickness of 1.39 nm. It was also found by X-ray diffractometry and Fourier transform infrared spectroscopy (FT-IR) analysis that the functionalization caused the formation of C=O bonds at the edges of the graphite nanosheets. The yield from this functionalization method was found to be dependent on the reaction temperature, only when it is between 70 and 130°C, because of the dehydration of phthalic acid at higher temperatures. This was confirmed by FT-IR analysis and the observation of low thermal energies at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document