scholarly journals Preparation and Characterization of Nano-size Polyreactive Blue MXR

2012 ◽  
Vol 9 (3) ◽  
pp. 1336-1341
Author(s):  
Joghee Suresh ◽  
Raja Gopal Rajiv Gandhi ◽  
Sundaram Gowri ◽  
Samayanan Selvam ◽  
Mahalingam Sundrarajan

Nanosize Polyreactive blue MXR dye was synthesized from reactive blue MXR dye in presence of potassium persulfate as catalyst. The formation of polyreactive blue MXR was indicated by colour change from blue to brown. The characterization techniques such as, Fourier transform infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffractrometry (XRD) were used to characterize the formation of nanosize polyreactive blue MXR. The absence of asymmetric stretching of NH2 group in polymer dye FTIR spectrum confirmed the polymerization of dye was occurring. The average particle size of the polymer dye was found to be 18.11 nm according to Scherer formula.AFM analysis shows the three dimensional structure of polyreactive blue MXR.

2017 ◽  
Vol 35 (3) ◽  
pp. 539-547
Author(s):  
Ştefan Ţălu ◽  
Sebastian Stach ◽  
Shikhgasan Ramazanov ◽  
Dinara Sobola ◽  
Guseyn Ramazanov

AbstractThe purpose of this study was to investigate the topography of silicon carbide films at two steps of growth. The topography was measured by atomic force microscopy. The data were processed for extraction of information about surface condition and changes in topography during the films growth. Multifractal geometry was used to characterize three-dimensional micro- and nano-size features of the surface. X-ray measurements and Raman spectroscopy were performed for analysis of the films composition. Two steps of morphology evolution during the growth were analyzed by multifractal analysis. The results contribute to the fabrication of silicon carbide large area substrates for micro- and nanoelectronic applications.


Author(s):  
T. C. Marsh ◽  
J. Vesenka ◽  
E. Henderson

Atomic-Force Microscopy (AFM) has become an effective tool in the three dimensional characterization of biological systems and is capable of Angstrom sensitivity in the vertical dimension. One unresolved dilemma is that the observed height (diameter) of B-DNA being about 10Å, is less than half its x-ray diffraction value. In this paper we attempt to determine the source of this discrepancy by comparing plasmid DNA co-deposited with a novel form of DNA called “G-wires” (Figure 1). G-wires are formed by G-rich sequences. They are composed of G-4 DNA, a quadruple helical structure. X-ray data of G-4 DNA gives a diameter of 27Å, comparable to that expected for B-DNA (20 to 25Å). In the AFM these structures have a significantly greater height (av. = 22 Å) compared to double stranded (av. = 7 Å) or supercoiled B-DNA (av. = 14 Å) (Figure 2). Thus, the apparent height of nucleic acids in the AFM is dependent upon their innate structural characteristics.


2019 ◽  
Vol 16 (1) ◽  
pp. 0199
Author(s):  
Khalil Et al.

Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and  10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where they indicated that sensitivity reached 42.566% at 300 oC, spectral response time less than 52.2 s and recovery time 135.9 s.


2019 ◽  
Vol 16 (1(Suppl.)) ◽  
pp. 0199 ◽  
Author(s):  
Khalil Et al.

Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and  10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where they indicated that sensitivity reached 42.566% at 300 oC, spectral response time less than 52.2 s and recovery time 135.9 s.


2005 ◽  
Vol 873 ◽  
Author(s):  
Joachim Bill ◽  
Peter Gerstel ◽  
Rudolf C. Hoffmann ◽  
Lars P. H. Jeurgens ◽  
Peter Lipowsky ◽  
...  

AbstractWithin this paper the suitability of amino acids and dipeptides as structure-directing agents is discussed. According to that bio-inspired approach these biomolecules were investigated with respect to the evolution of zinc oxide-based architectures. Those small molecules are able to trigger the morphology of these materials ranging from grain-like via two up to three dimensional features. Besides morphological aspects the structural characterization of these solids by means of electron and atomic force microscopy as well as by photoelectron spectroscopy and X-ray diffraction are discussed in order to extract the function of the biomolecules with regard to the formation of the inorganic phases.


2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Jianhui Wu ◽  
Cailian Du ◽  
Jieming Zhang ◽  
Bo Yang ◽  
Andrew G. S. Cuthbertson ◽  
...  

Nanotechnology is increasingly being used in areas of pesticide production and pest management. This study reports the isolation and virulence of a new Metarhizium anisopliae isolate SM036, along with the synthesis and characterization of M. anisopliae–chitosan nanoparticles followed by studies on the efficacy of nanoparticles against Plutella xylostella. The newly identified strain proved pathogenic to P. xylostella under laboratory conditions. The characterization of M. anisopliae–chitosan nanoparticles through different analytical techniques showed the successful synthesis of nanoparticles. SEM and HRTEM images confirmed the synthesis of spherical-shaped nanoparticles; X-ray diffractogram showed strong peaks between 2θ values of 16–30°; and atomic force microscopy (AFM) analysis revealed a particle size of 75.83 nm for M. anisopliae–chitosan nanoparticles, respectively. The bioassay studies demonstrated that different concentrations of M. anisopliae–chitosan nanoparticles were highly effective against second instar P. xylostella under laboratory and semi-field conditions. These findings suggest that M. anisopliae–chitosan nanoparticles can potentially be used in biorational P. xylostella management programs.


2004 ◽  
Vol 831 ◽  
Author(s):  
Phanikumar Konkapaka ◽  
Huaqiang Wu ◽  
Yuri Makarov ◽  
Michael G. Spencer

ABSTRACTBulk GaN crystals of dimensions 8.5 mm × 8.5 mm were grown at growth rates greater than 200μm/hr using Gallium Vapor Transport technique. GaN powder and Ammonia were used as the precursors for growing bulk GaN. Nitrogen is used as the carrier gas to transport the Ga vapor that was obtained from the decomposition of GaN powder. During the process, the source GaN powder was kept at 1155°C and the seed at 1180°C. Using this process, it was possible to achieve growth rates of above 200 microns/hr. The GaN layers thus obtained were characterized using X-Ray diffraction [XRD], scanning electron microscopy [SEM], and atomic force microscopy [AFM]. X-ray diffraction patterns showed that the grown GaN layers are single crystals oriented along c direction. AFM studies indicated that the dominant growth mode was dislocation mediated spiral growth. Electrical and Optical characterization were also performed on these samples. Hall mobility measurements indicated a mobility of 550 cm2/V.s and a carrier concentration of 6.67 × 1018/cm3


2000 ◽  
Vol 662 ◽  
Author(s):  
Elizabeth E. Shen ◽  
Hsin-Lung Chen ◽  
Balaji Narasimhan

AbstractThis research examines the microstructure of polyanhydride blends for use in drug delivery devices. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) studies were performed on the homopolymers and blends of the polyanhydrides poly(1,6-carboxyphenoxy hexane) (CPH) and poly(sebacic anhydride) (SA). AFM of the CPH/SA blends 20:80, 50:50, and 80:20 showed distinct patterns indicating spinodal decomposition and phase separation on the micron-scale. Because it has been shown that incorporated drugs will thermodynamically partition into phase-separated domains depending on their hydrophobicity, polyanhydride blends will be able to encapsulate larger bioactive compounds including nucleotides, proteins, and vaccines. Preliminary SAXS studies of the CPH/SA blend systems provide information on the crystalline morphology of the polymer. A peak shift to a lower q from poly(SA) to the blends indicates that the poly(CPH) is incorporated into and causes swelling of the interlamellar amorphous regions of poly(SA).


2015 ◽  
Vol 752-753 ◽  
pp. 1379-1383
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
Zaidi Embong

The purpose of this paper is to study a ink surface morphology, quantify the chemical composition involved in processing of graphite ink printed by flexographic printing. The methodology is to use surface sensitive technique, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). As a finding we successfully achieved 25 micron lines array using PDMS printing plate. The Originality and value of this work is surface sensitive techniques like XPS, AFM and FESEM were exclusively used in order to characterize graphite inks printed by flexographic method, using PDMS printing plate.


Sign in / Sign up

Export Citation Format

Share Document