POST-BUCKLING BEHAVIOUR OF CONCRETE-FILLED CIRCULAR STEEL TUBE STUB COLUMNS UNDER AXIAL COMPRESSION

2018 ◽  
Author(s):  
Chang Yang ◽  
◽  
Zhixiang Yu ◽  
Shichun Zhao ◽  
Yuping Sun ◽  
...  
2018 ◽  
Vol 38 ◽  
pp. 03035
Author(s):  
Ji Zhong Wang ◽  
Lu Cheng ◽  
Xin Pei Wang

A new column of FRP composite tube confined steel-reinforced concrete (FTCSRC) column was proposed. This paper elaborates on laboratorial and analytical studies on the behavior of FCTSRC columns subjected to axial compressive load. Eight circular FTCSRC stub columns and one circular steel tube confined concrete (STCC) stub column were tested to investigate the failure mode and axial compression performance of circular FTCRSC columns. Parametric analysis was implemented to inquire the influence of confinement material (CFRP-steel tube or CFRP-GFRP tube), internal steel and CFRP layers on the ultimate load capacity. CFRP-steel composite tube was composed of steel tube and CFRP layer which was wrapped outside the steel tube, while CFRP-GFRP composite tube was composite of GFRP tube and CFRP layer. The test results indicate that the confinement effect of CFRP-steel tube is greatly superior to CFRP-GFRP tube. The ductility performance of steel tube confined high-strength concrete column can be improved obviously by encasing steel in the core concrete. Furthermore, with the increase in the layers of FRP wraps, the axial load capacity increases greatly.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jing Ji ◽  
Maomao Yang ◽  
Zhichao Xu ◽  
Liangqin Jiang ◽  
Huayu Song

The behavior of H-shaped honeycombed stub columns with rectangular concrete-filled steel tube flanges (STHCCs) subjected to axial load was investigated experimentally. A total of 16 specimens were studied, and the main parameters varied in the tests included the confinement effect coefficient of the steel tube (ξ), the concrete cubic compressive strength (fcu), the steel web thickness (t2), and the slenderness ratio of specimens (λs). Failure modes, load-displacement curves, load-strain curves of the steel tube flanges and webs, and force mechanisms were obtained by means of axial compression tests. The parameter influences on the axial compression bearing capacity and ductility were then analyzed. The results showed that rudder slip diagonal lines occur on the steel tube outer surface and the concrete-filled steel tube flanges of all specimens exhibit shear failure. Specimen load-displacement curves can be broadly divided into elastic deformation, elastic-plastic deformation, and load descending and residual deformation stages. The specimen axial compression bearing capacity and ductility increase with increasing ξ, and the axial compression bearing capacity increases gradually with increasing fcu, whereas the ductility decreases. The ductility significantly improves with increasing t2, whereas the axial compression bearing capacity increases slightly. The axial compression bearing capacity decreases gradually with increasing λs, whereas the ductility increases. An analytical expression for the STHCC short column axial compression bearing capacity is established by introducing a correction function ( w ), which has good agreement with experimental results. Finally, several design guidelines are suggested, which can provide a foundation for the popularization and application of this kind of novel composite column in practical engineering projects.


2019 ◽  
Vol 19 (06) ◽  
pp. 1950063 ◽  
Author(s):  
Kang He ◽  
Yu Chen

This paper studies the structural stability of circular steel tubular stub columns at elevated temperatures under axial compression. Fifty-one specimens are subjected to high-temperature treatment and axial compression. The variables of the specimen are temperature, wall thickness of steel tube and duration of high temperature. The displacement–load curve, strain–load curve, ultimate load, axial compressive stiffness and failure characteristics of the specimens were analyzed. Test results show that after exposure to high temperatures, the specimens’ failure phenomenon in the axial compression loading test is consistent with that at room temperature, the bearing capacity decreases considerably, the ductility decreases slightly and the axial compressive stiffness changes irregularly. Temperature is the determining factor of the ultimate load of the specimen, and the reducing extent of ultimate load increases with the temperature. When the temperature reaches 1000∘C, its maximum reducing extent exceeds 50%. Among the three parameters considered in this study, the duration of high temperature has the least influence on the specimen.


2013 ◽  
Vol 838-841 ◽  
pp. 439-443 ◽  
Author(s):  
Zhi Liang Zuo ◽  
Da Xin Liu ◽  
Jian Cai ◽  
Chun Yang ◽  
Qing Jun Chen

To improve the mechanical behavior of T-shaped concrete-filled steel tubular (T-CFT) column, the method that setting binding bars along the height of steel tube is proposed. Five T-CFT stub columns with binding bars and another two without binding bars subjected to axial compression were tested. The influences of the spacing and diameter of binding bars on the failure modes, maximum strength, and ductility of T-CFT stub columns are investigated. The experimental results demonstrate that by setting binding bars or decreasing the spacing of binding bars, the buckling modes of the steel plates are changed, the local buckling of the steel plates is postponed, and the confinement effects on the core concrete can be improved significantly. By setting binding bars, the bearing capacity and ductility of the columns are enhanced by 1.17 and 3.38 times at most, respectively. By increasing the diameter of binding bars, the ductility of the columns is improved, but the bearing capacity and buckling strength cannot be improved when the diameter is large enough.


Sign in / Sign up

Export Citation Format

Share Document