Utilizing Solar Thermal Energy for Hot Water

Author(s):  
Mohammad Moradi ◽  
Simin Fazel Dehkordi ◽  
Akbar Alidadi
Author(s):  
Gonzalo Sánchez-Barroso ◽  
Jaime González-Domínguez ◽  
Justo García-Sanz-Calcedo

Hospitals need to prepare large amounts of domestic hot water (DHW) to develop their healthcare activity. The aim of this work was to analyse potential savings that can be achieved by installing solar thermal energy for production of domestic hot water in the hospitals of Extremadura (Spain). For this purpose, 25 hospitals between 533 and 87,118 m2 and between 15 and 529 beds were studied, three solar factor scenarios were simulated (0.70, 0.75 and 0.80) and the necessary investment and corresponding economic and environmental savings were calculated. Better economic results and energy ratios for 70% of solar contribution were obtained. These results show an average payback of 4.74 years (SD = 0.26) reaching 4.29 kWh/€ per year (SD = 0.20). Undertaking an investment of 674,423 €, 2,895,416 kWh/year of thermal energy could be generated with which to save both 145,933 € and 638 tons of CO2 per year. It was statistically demonstrated the priority of carrying out an installation with a solar factor of 70%, investing preferably in hospitals in Cáceres over those in Badajoz, especially in the public sector with more than 300 beds. These findings will provide hospital managers with useful information to make decisions on future investments.


2012 ◽  
Vol 97 ◽  
pp. 897-906 ◽  
Author(s):  
M.C. Rodríguez-Hidalgo ◽  
P.A. Rodríguez-Aumente ◽  
A. Lecuona ◽  
M. Legrand ◽  
R. Ventas

Author(s):  
Anagha Pathak ◽  
Kiran Deshpande ◽  
Sandesh Jadkar

There is a huge potential to deploy solar thermal energy in process heat applications in industrial sectors. Around 50 % of industrial heat demand is less than 250 °C which can be addressed through solar energy. The heat energy requirement of industries like automobile, auto ancillary, metal processing, food and beverages, textile, chemical, pharmaceuticals, paper and pulp, hospitality, and educational institutes etc. can be partially met with solar hybridization based solutions. The automobile industry is one of the large consumers of fossil fuel energy in the world. The automobile industry is major economic growth driver of India and has its 60 % fuel dependence on electricity and remaining on oil based products. With abundant area available on roof top, and need for medium temperature operation makes this sector most suitable for substitution of fossil fuel with renewable solar energy. Auto sector has requirement of heat in the temperature range of 80-140 oC or steam up to 2 bar pressure for various processes like component washing, degreasing, drying, boiler feed water preheating, LPG vaporization and cooling. This paper discusses use of solar energy through seamless integration with existing heat source for a few processes involved in automobile industries. Integration of the concentrated solar thermal technology (CST) with the existing heating system is discussed with a case study for commonly used processes in auto industry such as component washing, degreasing and phosphating. The present study is undertaken in a leading automobile plant in India. Component cleaning, degreasing and phosphating are important processes which are carried out in multiple water tanks of varying temperatures. Temperatures of tanks are maintained by electrical heaters which consumes substantial amount of electricity. Non-imaging solar collectors, also known as compound parabolic concentrators (CPC) are used for generation of hot water at required process temperature. The CPC are non-tracking collectors which concentrate diffuse and beam radiation to generate hot water at required temperature. The solar heat generation plant consists of CPC collectors, circulation pump and water storage tank with controls. The heat gained by solar collectors is transferred through the storage tank to the process. An electric heater is switched on automatically when the desired temperature cannot be reached during lower radiation level or during non-sunny hours/days. This solar heating system is designed with CPC collectors that generate process heating water as high as 90OC. It also seamlessly integrates with the existing system without compromising on its reliability, while reducing electricity consumption drastically. The system is commissioned in April, 2013 and since then it has saved ~ 1,75,000 units of electricity/year and in turn 164 MT of emission of CO2 annually.


2021 ◽  
Vol 19 ◽  
pp. 269-275
Author(s):  
Mateo Astudillo-Flores ◽  
◽  
Esteban Zalamea-Leon ◽  
Antonio Barragán-Escandón ◽  
M.R. Pelaez Samaniego ◽  
...  

The Andean Equatorial Region, due to its geographic location, shows great potential for using solar energy. Solar thermal energy is of interest in the residential sector in Ecuador and other Andean countries as a method to avoid fossilderived fuels consumption. However, previous learnings of the operation of solar water heating systems in other latitudes cannot be used in the conditions of Ecuador. Thus, the performance of the solar thermal energy systems in this geographic region deserves further study that consider typical high levels of cloudiness and fast climate oscillations. The objective of this work was to investigate the effect of the orientation of solar thermal plates on their energy efficiency and model the behaviour of these systems to predict their operation under Equatorial Andean climate conditions. For the F-Chart calibration different slopes angles were used, according to the typical roofs slopes in Cuenca, Ecuador. Results showed a monthly solar fraction, contributed by an evacuated tube collector is 26% higher than the flat plate collectors. The results also depict that, in the conditions of Cuenca, the greater solar water heating occurs when the collector is inclined 14° and facing towards the south. These findings can be used to predict the best operational conditions for using solar thermal energy collectors to produce hot water in the residential sector under equatorial highland altitude conditions.


Author(s):  
Rajeevan Ratnanandan ◽  
Jorge E. González

The paper presents a study of the performance of an active solar thermal heating and cooling system for small buildings. The work is motivated by the need for finding sustainable alternatives for building applications that are climate adaptable. The energy demand for heating and cooling needs in residential and light commercial buildings in mid-latitudes represent more than 50% of the energy consumed annually by these buildings. Solar thermal energy represents an untapped opportunity to address this challenge with sustainable solutions. Direct heating could be a source for space heating and hot water, and for heat operated cooling systems to provide space cooling. However, a key limitation in mainstreaming solar thermal for heating and cooling has been the size of thermal storage to implement related technologies. We address this issue by coupling a Phase Change Material (PCM) with an adsorption chiller and a radiant flooring system for year round solar thermal energy utilization in Northern climates. The adsorption chiller allows for chill water production driven by low temperature solar thermal energy for summer cooling, and low temperature radiant heating provides for space heating in winter conditions, while hot water demand is supplied year round. These active systems are operated by high performance solar thermal collectors. The PCM has been selected to match temperatures requirements of the adsorption chiller, and the tank was designed to provide three levels of temperatures for all applications; cooling, heating, and hot water. The material selection is paraffin sandwiched with a graphite matrix to increase the conductivity. The specific objective of the preset work is to provide a system optimization of this active system. The system is represented by a series of mathematical models for each component; PCM tank with heat exchangers, the adsorption machine, the radiant floor, and the solar thermal collectors (Evacuated tubular collectors). The PCM modeling allows for sensible heating, phase change process, and superheating. Parametric simulations are conducted for a defined small building in different locations in US with the objective of defining design parameters for; optimal solar collector array, sizing of the PCM tank, and performance of the adsorption machine and radiant heating system. The monthly and annual solar fractions of the system are also reported.


2020 ◽  
Vol 6 (7) ◽  
pp. 1349-1367 ◽  
Author(s):  
Drita Qerimi ◽  
Cvete Dimitrieska ◽  
Sanja Vasilevska ◽  
Arlinda Alimehaj Rrecaj

Most of the generated electricity in Kosovo is produced from fossil fuel, a part of the energy comes from the import, while participation of renewable resources is symbolic, and a bias between the grid extension and the load of power generated sometimes results in shortage of electricity and thus frequent power cuts. The use of renewable energy and particularly the solar thermal energy represents one of the most promising alternative strategies. In Kosovo, the global horizontal radiation ranges from 1241 kWh/m2 per year in Shterpce to 1461 kWh/m2 per year in Gjakova, while the average for Kosovo can be estimated at 1351 kWh/m2 per year. The average sun duration for the city of Pristine is 5.44 h, while the average horizontal irradiation is 3.79 kWh/m² per day. Participation of energy consumption in household is still dominant - about 41.4% of the total consumption in Kosovo, 15% of this energy is used for domestic hot water. This energy demand can be lowered significantly by using improved building construction techniques and utilization of RES-s, especially solar thermal. The first step is to map the city in different areas to locate suitable locations for the installation of solar collectors serving sanitary hot water. The demand for sanitary hot water varies from object to object, this variation depends on whether the building is individual or collective, school institutions or religious buildings, for this reason the classification of buildings was done according to the request for sanitary hot water. After that the demand for sanitary hot water is calculated for several different institutions: Residential houses, Dormitories and Hospitals. For all of the above-mentioned cases the data for: solar fraction, solar contribution, CO2 avoided, collector temperature, financial analysis etc. are gained using the TSOL 2018 software. To evaluate the active energy for a time period, the daily, monthly and annual performance for three systems which are located in University Clinical Center of Pristine, Kosovo have been analyzed. In addition the results of the mathematical model, simulation and measured solar energy contribution for solar station in Infective disease clinic have been compared. In this paper, a proposal for replacing the conventional water heaters with the domestic solar water heaters (DSWH) is made. A case study for 38289 Residential households in Pristine has been selected. The initial cost of the solar water heater for the city is 60113730 €. The system saves 7274910 € annually and reduced C𝑂2 emission by 22973400 kg. The results from the paper show that the DSWH is economically feasible in Pristine and can result in fuel saving and CO2 emission reduction.


Author(s):  
Guohua Shi ◽  
Songling Wang ◽  
Youyin Jing ◽  
Yuefen Gao

Liquefied petroleum gas (LPG) is an important source of residential gas in China due to its advantages. Traditional LPG vaporizer mainly depends on electric heating as its heat source, which leads to high energy cost and can not meet the demand of energy conservation policy. For a community with 1000 families in Beijing, a new LPG gasification system utilizing solar thermal energy has been designed in this paper. This system uses hot water produced by a solar water heating system as vaporization heat source and uses an electric heater as assisted heat source. In order to understand the economic efficiency of the whole system better, we compare the economic feasibility of the new system with that of traditional LPG vaporization system using annual cost method (AC). In addition, a spreadsheet computer program is used in this paper for purpose of the sensitivity analysis of the parameters. The optimal operation life for each system is calculated. The result shows that the new system is more economical than the traditional system and is an environmentally friendly alternative.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1449
Author(s):  
Sofía Sánchez Álvarez ◽  
Mª Pilar Castro García

This project presents the design of a simple software for the determination of solar coverage (f-Chart method) in domestic hot water installations. This program allows to determine in a fast and simple way, the fulfillment of the minimum needs of solar thermal energy supply according to the Technical Building Code.


Conventional flat plate collectors makes use of a large amount of metals such as Copper, Aluminium and Galvanised iron or steel for the collection and transport of solar thermal energy for useful heat gain. Studies on the energy inputs required for the production of these different materials indicate that a large amount of fossil fuel energy is required for their production at different stages. Absorber plate for conventional FPC requires comparatively more metal when compared to other parts of the system. In the present paper it is replaced using cheap material such as concrete reinforced with waste metal fibres. Three metal fibres namely copper (Cu), mild steel (MS) and aluminium (Al) of average size 3 mm have been added with volume fraction varying from 0.0011 to 0.0068. Thermal conductivity of the metal fibre reinforced concrete increase more significantly with addition of copper, when compared to MS and Al. Plate thickness of 25 mm has been fixed based on collector efficiency factor analysis for flat plate collector of size 2 m x 1 m. Experiments conducted revealed that hot water at 50-60oC at 60 kg/hr with daily average efficiency of 55 – 65 % can be supplied from FPC in winter season.


Author(s):  
Alejandro Ayala ◽  
Llanos Mora-López ◽  
Mariano Sidrach-de-Cardonaa

This article presents the work carried out to implement the use of solar thermal energy in a rehabilitation clinic located in southern Spain. The objective is to reduce the consumption of fossil fuels and improve energy sustainability and efficiency of clinical current processes and contribute to a better use of the abundant solar resources in this area. We have developed a strategy that allows better utilization of production of solar collectors. In the first phase we have designed a solar thermal system for domestic hot water supply of 30 double rooms (half the current capacity of the center) and pool heating. This pool is outdoors, with a capacity of 160 m3 and is used for medical treatment during the months of May to September. The management of the use of water heated in the collectors during this period has been established to give priority to the pool heating and the use of the excess energy to supply the hot water system. We have simulated the system performance using the F-char method. The results show that the designed system is able to cover 100% of the energy needs of the pool and cover 60% of the hot water needs of the 30 rooms. It can be stated that the use of this type of energy in facilities such as the one described in this paper allows maximizing the thermal energy produced and represent a significant saving of fossil fuels.


Sign in / Sign up

Export Citation Format

Share Document