scholarly journals Multiplex quantitative PCR for Streptococci species identification and detection of genetic drug resistance markers in COPD patients

2014 ◽  
pp. 40-48
Author(s):  
L. N. Ikryannikova ◽  
M. E. Senina ◽  
E. S. Lisitsina ◽  
L. M. Ogorodova ◽  
S. V. Fedosenko ◽  
...  
Author(s):  
Richa Singh ◽  
Davinder S. Garcha ◽  
Anant R.C. Patel ◽  
Alexander J. Mackay ◽  
Gavin C. Donaldson ◽  
...  

2017 ◽  
Vol 2 (Suppl 2) ◽  
pp. A21.3-A22
Author(s):  
Palmer Netongo ◽  
Séverin Kamdem ◽  
Thirumalaisamy Velavan ◽  
Peter Kremsner

2018 ◽  
Vol 99 (6) ◽  
pp. 1499-1503 ◽  
Author(s):  
Leabaneng Tawe ◽  
Michela Menegon ◽  
Pleasure Ramatlho ◽  
Charles W. Muthoga ◽  
Naledi Mutukwa ◽  
...  

Genetics ◽  
1984 ◽  
Vol 107 (4) ◽  
pp. 563-576
Author(s):  
Eva M Eves ◽  
Kwen-Sheng Chiang

ABSTRACT The transmission of two non-Mendelian drug resistance markers has been studied in crosses of Chlamydomonas reinhardtii involving diploids and aneuploids with different mating type genotypes. Under normal laboratory conditions for gametogenesis, mating and zygote maturation, the transmission pattern of the non-Mendelian markers sr-u-1 (resistance to streptomycin) and spr-u-1-27-3 (resistance to spectinomycin) is primarily determined by the mating type genotypes of the parental cells. Our results confirm and expand an earlier observation suggesting that an apparent codominant function of the female (mt  +) allele in regulating chloroplast gene transmission in meiosis appears to be distinct and separate from its recessive function in regulating mating behavior. The chloroplast DNA complement (as indexed by the number of extranuclear DNA-containing bodies) may exert a secondary effect on the transmission of these markers. Within a mating type group (mt+/mt- or mt-/mt-) a cell line with more chloroplast DNA tended to transmit its non-Mendelian markers more frequently than a cell line with less chloroplast DNA.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Monday Tola ◽  
Olumide Ajibola ◽  
Emmanuel Taiwo Idowu ◽  
Olusesan Omidiji ◽  
Samson Taiwo Awolola ◽  
...  

Abstract Objective Nigeria bears 25% of global malaria burden despite concerted efforts towards its control and elimination. The emergence of drug resistance to first line drugs, artemisinin combination therapies (ACTs), indicates an urgent need for continuous molecular surveillance of drug resistance especially in high burden countries where drug interventions are heavily relied on. This study describes mutations in Plasmodium falciparum genes associated with drug resistance in malaria; Pfk13, Pfmdr1, PfATPase6 and Pfcrt in isolates obtained from 83 symptomatic malaria patients collected in August 2014, aged 1–61 years old from South-west Nigeria. Results Two Pfmdr1, N86 and Y184 variants were present at a prevalence of 56% and 13.25% of isolates respectively. There was one synonymous (S679S) and two non-synonymous (M699V, S769M) mutations in the PATPase6 gene, while Pfcrt genotype (CVIET), had a prevalence of 45%. The Pfk13 C580Y mutant allele was suspected by allelic discrimination in two samples with mixed genotypes although this could not be validated with independent isolation or additional methods. Our findings call for robust molecular surveillance of antimalarial drug resistance markers in west Africa especially with increased use of antimalarial drugs as prophylaxis for Covid-19.


Acta Tropica ◽  
2020 ◽  
Vol 206 ◽  
pp. 105454
Author(s):  
Fei-Wen Cheong ◽  
Shairah Dzul ◽  
Mun-Yik Fong ◽  
Yee-Ling Lau ◽  
Sasheela Ponnampalavanar

2019 ◽  
Vol Volume 12 ◽  
pp. 1941-1949 ◽  
Author(s):  
Grace Olasehinde ◽  
Ruth Diji-geske ◽  
Irawo Fadina ◽  
Damola Arogundade ◽  
Precious Darby ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2476-2476
Author(s):  
Krishan K. Sharma ◽  
Juan Felipe Rico ◽  
Michael W. Becker ◽  
Gail J. Roboz ◽  
Gabriela Chiosis ◽  
...  

Abstract Abstract 2476 Stress-inducible heat shock protein 70 (HSP70) is a major cytoprotective factor and a molecular chaperone that interacts with HSP90 to form a multi-chaperone complex. Cancer cells are highly dependent on this complex due to their increased demand for protein synthesis. HSP70 overexpression inhibits apoptosis and has been associated with drug resistance and poor prognosis. YK5, a novel inhibitor of tumor-HSP70, has been shown to induce potent cell death in AML blast, progenitor, and stem cell populations with minimal effects in normal hematopoietic cells. Due to the role of HSP70 in drug resistance, we examined the effect of combining YK5 with other chemotherapeutic agents, including arsenic trioxide, cytarabine, suberoylanilide hydroxamic acid (SAHA) and PU-H71, a novel tumor-specific HSP90 inhibitor. We tested the ability of YK5 to synergize with either AsO3, AraC, SAHA, or PU-H71 in primary AML samples. Using multiparameter flow cytometry to measure viability after 48 hours of treatment, we found that combining 1μM YK5 with either 500nM AsO3 or PU-H71 resulted in a significant increase in cell death when compared to either agent alone (n=9, mean viability: 51.8, 67.2, and 13.4% for AsO3, YK5, and AsO3/YK5, respectively, P = 0.0018; mean viability: 57.1 and 20.8% for PU-H71 and PU-H71/YK5, respectively, P = 0.0029). A synergistic relationship between YK5 and both AsO3 and PU-H71 was found in all nine primary samples (combination indexes 0.29 – 0.76 with YK5/AsO3, 0.33 – 0.83 with YK5/PU-H71). In contrast, the combination of YK5 with either AsO3 or PU-H71 in CD34+ cord blood mononuclear cells did not result in a significant increase in cell death when compared to either agent alone (mean viability: 42.4, 72.4, and 37.2% for AsO3, YK5, and AsO3/YK5, respectively; mean viability: 61.1 and 51.1% for PU-H71 and PU-H71/YK5, respectively). YK5 in combination with either AraC or SAHA, however, did not result in a significant increase in cell death when compared to either drug alone, with an additive effect being demonstrated with a 1:1 YK5 to AraC/SAHA drug ratio (Mean CI = 0.9918). To determine the mechanism of the observed synergistic activity, intracellular HSP70 and active caspase-3, a client of HSP70, were measured using flow cytometry. Both AsO3 and PU-H71 significantly increased intracellular HSP70 and caspase-3 (Mean fold change = 18.3, 21.0 of HSP70 and 9.9, 8.3 of Caspase-3 for AsO3 and PU-H71 treatment, respectively), while treatment with AraC or SAHA resulted in no change in HSP70 levels. Furthermore, quantitative PCR revealed that treatment with either AsO3 or PU-H71 strongly upregulated HSPA1A and HSPA6, the main stress-inducible isoforms of HSP70 (Mean fold change = 15.9, 14.1 of HSPA1A, and 20.8, 23.4 of HSPA6 for AsO3 and PU-H71 treatment, respectively). AraC and SAHA had no significant upregulation of these genes. We have previously shown that increased levels of HSPA1A correlate with sensitivity to HSP70 inhibition via YK5. To further explore the mechanism of this observed synergy, flow cytometry was used to measure the levels of reactive oxygen species (ROS). Treatment with AsO3, PU-H71, AraC, or SAHA resulted in a significant increase in ROS (Mean fold change = 2.75, 1.92, 2.89, 1.67, respectively). Quantitative PCR also confirmed the activation of the oxidative stress response by the upregulation of heme oxygenase 1 (HMOX1) by treatment with these drugs (Mean fold change = 10.9, 8.7, 11.2, 7.7, respectively). YK5, however, did not induce ROS or upregulate HMOX1. Interestingly, pretreatment with NAC in primary AML samples (n=4) resulted in no protection from YK5 synergistic effect when combined with either AsO3 or PU-H71. These results suggest that YK5 synergizes with AsO3 and PU-H71 due to the increase in intracellular HSP70 caused by these drugs. This synergy is most likely due to the activation of the heat shock response and independent of the production of ROS due to drug treatment. In summary, we have found that the novel tumor-HSP70 inhibitor YK5 can synergize with AsO3 and PU-H71 in primary human AML, and that the basis of this synergism is due to the increase in intracellular HSP70 caused by these chemotherapeutic agents. HSP70 inhibition represents a novel approach in AML treatment and can be particularly significant to drug-resistant patients when combined with other chemotherapy. Disclosures: Roboz: Astex Pharmaceuticals: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document