Features of free radical processes in the liver of rats with a nutrient imbalance

2020 ◽  
Vol 66 (5) ◽  
pp. 386-391
Author(s):  
O.N. Voloshchuk ◽  
Yu.V. Stus ◽  
G.P. Kopylchuk

The activity of free radical processes in liver mitochondria was investigated in rats kept on high-sucrose and low protein/high-sucrose diets. Excess of dietary sucrose caused intensification of free radical processes in liver mitochondria as evidenced by increased hydroxyl radical generation, accumulation of primary (conjugated dienes, ketodienes) and secondary products (TBA-reactive products) of lipid peroxidation, increased cholesterol/phospholipids ratio and also accumulation of oxidative modification products of proteins (carbonyl derivatives). Additional nutritional protein deficiency (low protein/high-sucrose diet) enhanced destructive changes in liver mitochondria. This suggests a critical role of nutrient protein supplementation for maintaining the functional activity of mitochondria. The established changes can be considered as one of possible mechanisms of functional liver activity violation in conditions of nutrient imbalance.

2021 ◽  
Vol 26 (2(49)) ◽  
pp. 11-22
Author(s):  
O. V. Ketsa ◽  
M. M. Marchenko ◽  
О. А. Samuliak

Introduction. The effect of laser irradiation on the body can lead to local tissue damage, which will be accompanied by changes in biochemical processes that occur in the kidneys. The direction of these changes is completely unclear, so the study of free radical oxidation of lipids and proteins as the main markers of oxidative stress in the body and their correction by ω-3 polyunsaturated fatty acids (PUFA) remains relevant. Aim.  To evaluate the intensity of lipid peroxidation and oxidative modification of proteins in the postnuclear fraction of rat kidneys under the action of laser irradiation and additional administration of ω-3 PUFA. Methods. The studies used white outbred rats, which were irradiated daily for 4 minutes with a laser diode with a wavelength of 650 nm, power of 50 mW in the abdominal cavity at a distance of 10 cm from the skin surface. The state of lipid peroxidation (LPO) was determined by the level of primary, secondary and final products. The intensity of oxidative modification of proteins (OMP) was evaluated by the level of carbonyl derivatives and protein SH-groups. To correct the prooxidant state, the animals were additionally injected with ω-3 PUFA. Results. Low-intensity laser irradiation has a destructive effect on the cell membranes of the kidneys, which is expressed by an increase in primary, secondary and final products of LPO in phospholipid extracts and an increase in the intensity of OMP. The introduction of ω-3 PUFAs reduces free radical processes in the kidneys of irradiated rats, but this effect depends on the scheme of their introduction. ω-3 PUFAs do not show antioxidant effect under the conditions of their introduction after laser irradiation. Daily administration of ω-3 PUFA two hours before irradiation shows a slight antioxidant effect only in the initial stages of irradiation. Preliminary seven-day administration of ω-3 PUFA before laser irradiation is the most effective, as it helps to reduce free radical processes. Conclusion. It is established that ω-3 PUFAs are able to have a corrective effect on the action of low-intensity laser irradiation, which depends on the scheme of their introduction. The highest antioxidant effect is observed in groups of animals to which ω-3 PUFA was previously administered before the action of laser irradiation.


2020 ◽  
Vol 66 (6) ◽  
pp. 82-87
Author(s):  
O.M. Voloshchuk ◽  
◽  
G. P. Kopylchuk ◽  
М.S. Ursatyу ◽  
◽  
...  

The relationship between the quantitative ratio of redox forms of ubiquinone and the degree of free radical damage to mitochondrial proteins in rat liver against the background of nutritional imbalance was investigated. The animals were divided into the following experimental groups: I – animals receiving full-value semi-synthetic ration (control group); II – animals receiving high-sucrose diet; III – animals receiving low-protein high-sucrose diet. The content of total and oxidized ubiquinone was determined spectrophotometrically at 275 nm, the content of reduced ubiquinone was determined by the difference between the content of total and oxidized ubiquinone. The intensity of the oxidative modification of proteins was assessed by the accumulation of carbonyl derivatives in the reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH), the content of free SH-groups was assessed by using the Elman reagent. It was found that the most pronounced decrease in the content of total ubiquinone (almost twice) and the redistribution of its redox forms (reduction of the content of reduced ubiquinone by 7.2 times against the background of an increase in the level of oxidized ubiquinone by 2 times) in rat liver mitochondria is observed in animals that received a diet high in sucrose against the background of alimentary protein deprivation. In addition, the animals of this group showed the most pronounced free radical oxidation of mitochondrial proteins, as evidenced by a 3.5-fold increase in the content of carbonyl derivatives and a 2.6-fold decrease in the content of free protein SH- groups. It was shown that nutritional protein deficiency is a critical factor affecting the intensity of free radical processes in mitochondria. The established changes in the ratio of the redox forms of ubiquinone and the degree of oxidative modification of mitochondrial proteins in rat liver could be considered as prerequisites for deepening the energy imbalance and violation of the functional activity of mitochondria under conditions of nutritional imbalance.


Author(s):  
N. Harasym ◽  
◽  
M. Verbeschuk ◽  
N. Bodnarchuk ◽  
M. Galan ◽  
...  

The content of products of lipoperoxidation and oxidative modification of proteins in rat blood plasma under the action of quercetin and histamine was investigated. Quercetin was used at concentrations of 0.1; 0.3; 0.5; 1; 3; 5 mm, and histoma - 0.01; 0.1; 1; 10 μm. It was found that quercetin in the blood plasma of rats causes a slight increase in the content of hydroperoxides and TBA-positive products, except the concentration of 0.5 mm, at which the content of secondary products is reduced and the content of primary remains within the control. Histamine at concentrations of 0.01; 0.1; 1; 10 µM leads to an increase in the content of hydroperoxides and a decrease in the number of TBK-positive products. The combined effect of histamine and quercetin causes a significant increase in primary lipoperoxidation products, whereas TBK-positive lipid peroxidation products decrease. Quercetin in the concentration range of 0.1÷1 mM intensifies the accumulation of carbonyl groups of proteins of basic and neutral nature, while flavonoid at concentrations of 3.5 mM – slows down. Histamine at all tested concentrations leads to an increase in the content of carbonyl groups of proteins, except the concentration of 0.1 μm. Against the background of high concentration histamine, quercetin reduces the intensity of oxidative modification of proteins. The simultaneous action of low concentration histamine and quercetin at a concentration of 0.5 and 5 mm leads to the accumulation of carbonyl groups of proteins of a neutral nature, as well as to the main only when exposed to quercetin at a concentration of 5 mm. According to the analysis of variance, it was found that quercetin has a maximum effect on the accumulation of TBA-positive products and carbonyl groups of proteins of basic character. Histamine is strongly influenced by the accumulation of lipid hydroperoxides. Quercetin at concentrations of 0.1; 0.3; 0.5; 1; 3 mm determines between the indices of free radical processes under study, in the blood plasma of rats, a strong interconnectedness, and a bioflavonoid at a concentration of 5 mm leads to the formation of interconnections of average strength. Histamine at concentrations of 10; 1; 0.1 µM causes a close correlation of the mean strength between the individual indices of free radical oxidation. Histamine at a concentration of 0.01 μm causes a significant increase in the correlation between the parameters of sex and oxidative modification of proteins. The combined effect of quercetin at a concentration of 0.1 mm and histamine at a concentration of 0.01 μm causes a change in the nature of the correlation dependence, which becomes strong between most of the studied parameters.


Author(s):  
A. G. Zhukova ◽  
L. G. Gorokhova ◽  
A. S. Kazitskaya ◽  
T. K. Yadykina ◽  
N. N. Mikhailova ◽  
...  

Introduction. Fluorine compounds in small doses, but with prolonged exposure, cause various disorders in organs at the cellular and molecular levels. Activation of free-radical processes plays an important role in the damaging eff ect of fl uorides. Th erefore, one of the most eff ective ways to limit fl uorine-induced damage is to directly aff ect free-radical processes using herbal preparations with antioxidant properties.The aim of the study is to study the eff ect of a dihydroquercetin-based drug on the activity of free radical processes in brain tissue under subchronic exposure to sodium fl uoride (NaF).Materials and methods. Th e work was performed on white male laboratory rats weighing 200-250 g. Th e rats were divided into 3 groups: 1 — control; 2 — rats with chronic exposure to sodium fl uoride (NaF) for 9 weeks; 3 — rats receiving a NAF solution with simultaneous administration of a complex drug based on dihydroquercetin at a dose of 3 mg/kg in 1% starch gel for 3, 6 and 9 weeks. The activity of free radical oxidation and antioxidant defense enzymes — superoxide dismutase (SOD) and catalase-was determined in the cerebral cortex. Th e level of expression of hypoxia-induced transcription factor HIF — 1A and inducible forms of proteins HSP72 and HSP32 were determined in the cytosolic fraction of brain tissue.Results. In the early stages of subchronic fl uoride exposure (1-3 weeks), the expression of protective proteins HIF-1α, HSP72, HSP32 and catalase was shown in the rat cortex, as a result of which the activity of free-radical processes was maintained at the control level. An increase in the timing of fl uoride intake to 9 weeks led to a decrease in antioxidant protection and signifi cant activation of free radical oxidation in brain tissue. Daily administration of a complex drug with dihydroquercetin for 3, 6 and 9 weeks to rats with subchronic fl uoride exposure led to a decrease in the severity of pro- and antioxidant balance disorders in the cerebral cortex. At the same time, the greatest protective eff ect of dihydroquercetin with fl uoride exposure was manifested by the 9th week of its administration.Conclusions. When subchronic intake of fl uorides in the body, the drug based on dihydroquercetin has a neuroprotective eff ect, which is manifested by an increase in the activity of antioxidant enzymes of fr ee radical oxidation and catalase and the resistance of the cortex to induced fr ee radical oxidation.


Sign in / Sign up

Export Citation Format

Share Document