scholarly journals Catecholamine Concentrations during and after Retroperitoneoscopic Adrenalectomies in Surgeon, Anaesthetist and Patients – how is physiological stress different from pathophysiological stress?

2021 ◽  
Vol 9 (4) ◽  
Author(s):  
Harald Groeben ◽  
Laura Schulze ◽  
Violeta Brunkhorst ◽  
Piero Alesina ◽  
Martin Walz

Background: During resections of phaeochromocytoma release of catecholamines can lead to excessive hypertension and arrhythmia. Therefore, these procedures can be stressful to surgeons and anaesthetists. It is completely unknown, how the excessive catecholamine concentrations in phaeochromocytoma patients relate to catecholamine concentrations of physiological stress of physicians and control patients undergoing adrenalectomy because of hormone inactive tumours. We measured catecholamine concentrations, heart rate and blood pressure in patients with phaeochromocytoma, incidentaloma, a surgeon and an anaesthetist. Methods: After approval of the local ethics committee, we measured metanephrine and normetanephrine plasma concentrations in 8 patients with phaeochromocytoma, 6 control patients with incidentaloma, one surgeon and one anaesthetist at rest, after incision, after 20 and 40 minutes of surgery, and in recovery. Moreover, blood pressure and heart rate were obtained. Results: Intraoperatively significant increases of blood pressure, metanephrine and normetanephrine were found in patients and surgeon. Significant increase of normetanephrine was also found in control patients. But catecholamine concentrations in patients with phaeochromocytoma were 18 to 42 times higher than in control patients and physicians. Heart rate analysis showed no significant results. Conclusion: During phaeochromocytoma resections significant increases in catecholamine concentration and blood pressure can be found in patients and physicians. The excessive increase of catecholamine concentrations in phaeochromocytoma patients, was not always reflected by a corresponding blood pressure increase. Interestingly, although catecholamine concentrations in phaeochromocytoma patients almost normalize directly after surgery, their blood pressure remains stable without the need for pharmacological support.

2021 ◽  
Vol 10 (8) ◽  
pp. e41310817002
Author(s):  
Leandro de Oliveira Sant'Ana ◽  
Fabiana Rodrigues Scartoni ◽  
Patrícia Panza ◽  
Bernardo dos Santos Coelho ◽  
Tiago da Silva Ferreira ◽  
...  

Introduction: Different mechanical behaviors in resistance training can result in certain changes in the cardiovascular system. Objective: To verify the acute behavior of the main cardiovascular variables (heart rate, blood pressure, and double product) when performing resistance training with mono and multiarticular exercises. Methods: 10 male subjects participated in the study (26 ± 4 years; 81 ± 6 kg; 1.77 ± 2 m; 23 ± 1 kg / m2). They performed a test and retest for 8RM in the bench press and crucifix exercises on the machine. After the loads were outlined, they performed the intervention with the exercises, initially with a monoarticular activation containing two sets of 12 repetitions with 50% of the load acquired in the 8RM test of each exercise, using an interval of 60 seconds between one set and another. Additionally, three sets of 8 repetitions (80% 8RM) were performed with an interval between sets of 120 seconds. The execution speed was determined at a moderate level (2s for concentric, 2s for eccentric). It was measured before and during (series 1, series two, and series 3. Named as moments) heart rate exercises using POLAR, model RS800CX Multisport® and blood pressure using OMRON M6 (HEM-7001- E) ®. Then, the double product was calculated using the formula [HR (bpm) X SBP (mmHg)]. Results: In the heart rate analysis, there was an intra-condition difference for moments 1, 2, and 3 compared to rest (p <0.000). In the inter-condition comparison, no differences were observed for rest (p = 0.994) and for moments 1, 2 and 3 (p> 0.999). In systolic blood pressure, intra-conditions, differences were observed for moments 1, 2, and 3 compared to rest (p <0.000). In the inter-condition comparisons, there were no differences between rest (p> 0.999), moment 1 (p = 0.714), 2 (p = 0.999) and 3 (p> 0.999). For diastolic blood pressure, intra conditions, for bench press no significant differences were found for moments 1 (p = 0.331), 2 (p = 0.505) and 3 (p = 0.505) when compared to rest. In the same way it was for the crucifix, wherein the comparison with rest, no difference was observed in moments 1 (p = 0.849), 2 (p = 0.195) and 3 (p = 0.105). In the same sense, no difference was also observed in the comparisons between conditions for rest (p> 0.999), moment 1 (p = 0.999), 2 (p = 0.989) and 3 (p = 0.948). Finally, the double product in intra-condition comparisons found differences between moments 1, 2, and 3 compared to rest (p <0.000). However, in the inter-condition comparisons, no difference was observed at rest (p = 0.999), moment 1 (p = 0.868), 2 and 3 (p> 0.999). Conclusion: It is suggested that resistance training composed of mono and multi-joint exercises offers differences in hemodynamic responses but without differences between the types of mechanics applied by the exercises. Therefore, these results offer a partiality of what can happen with heart rate, blood pressure, and double product.


2017 ◽  
Vol 8 ◽  
Author(s):  
Óscar Barquero-Pérez ◽  
Ricardo Santiago-Mozos ◽  
José M. Lillo-Castellano ◽  
Beatriz García-Viruete ◽  
Rebeca Goya-Esteban ◽  
...  

2009 ◽  
Vol 22 (3) ◽  
Author(s):  
Lorenz van Doornen ◽  
Jan Houtveen

Physiological stress measures at work: relevance, limitations, and findings Physiological stress measures at work: relevance, limitations, and findings L. van Doornen & J. Houtveen, Gedrag & Organisatie, volume 22, September 2009, nr. 3, pp. 275-293 Physiological stress measures should only to a limited extent be considered as 'objective' indices of subjectively experienced work stress. Their contribution should mainly be sought in the quantification of the load on the body exerted by stress, the latter being the mediator of the health effects of work stress. For the most widely used physiological parameters in the field of work stress – blood pressure, heart rate, cardiac autonomic indices, adrenalin and cortisol – their physiology is described, their measurement techniques outlined, and an overall picture furnished with respect to differences observed between high- and low-work stress populations. Finally some suggestions are given with respect to future directions this field may take: focus on individual differences in physiological stress-sensitivity; quantification of recovery, and quantification of the effects of individual or workplace interventions.


2009 ◽  
Vol 67 (3b) ◽  
pp. 789-791 ◽  
Author(s):  
Gisele R. de Oliveira ◽  
Francisco de A.A. Gondim ◽  
Edward R. Hogan ◽  
Francisco H. Rola

Heart rate changes are common in epileptic and non-epileptic seizures. Previous studies have not adequately assessed the contribution of motor activity on these changes nor have evaluated them during prolonged monitoring. We retrospectively evaluated 143 seizures and auras from 76 patients admitted for video EEG monitoring. The events were classified according to the degree of ictal motor activity (severe, moderate and mild/absent) in: severe epileptic (SE, N=17), severe non-epileptic (SNE, N=6), moderate epileptic (ME, N=28), moderate non-epileptic (MNE, N=11), mild epileptic (mE, N=35), mild non-epileptic (mNE, N=33) and mild aura (aura, N=13). Heart rate increased in the ictal period in severe epileptic, severe non-epileptic, moderate epileptic and mild epileptic events (p<0.05). Heart rate returned to baseline levels during the post ictal phase in severe non-epileptic seizures but not in severe epileptic patients. Aura events had a higher baseline heart rate. A cut-off of 20% heart rate increase may distinguish moderate epileptic and mild epileptic events lasting more than 30 seconds. In epileptic seizures with mild/absent motor activity, the magnitude of heart rate increase is proportional to the event duration. Heart rate analysis in seizures with different degrees of movement during the ictal phase can help to distinguish epileptic from non-epileptic events.


Author(s):  
Mohammad Karimi Moridani ◽  
Tina Habikazemi ◽  
Nahid Khoramabadi

<p>Heart rate is one of the most important vital signs. People usually face high tension in routine life, and if we found an effective method to control the heart rate, it would be very desirable. One of the goals of this paper is to examine changes in heart rate before and during meditation. Another goal is that what impact could have meditation on the human heartbeat.</p><p>To heart rate analysis before and during meditation, available heart rate signals have been used for the Physionet database that contains 10 normal subjects and 8 subjects that meditation practice has been done on them. In this paper, first is paid to extract linear and nonlinear characteristics of heart rate and then is paid to the best combination of features to identify two intervals before and during meditation using MLP and SVM classifiers with the help of sensitivity, specificity and accuracy measurements.</p><p>The achieved results in this paper showed that choosing the best combination of a feature to make a meaningful difference between two intervals before and during meditation includes two-time features (Mean HR, SDNN), a frequency feature ( ), and three nonlinear characteristics   ( ). Also, using the support vector machine had better results than the MLP neural network. The sensitivity, specificity, and accuracy of the mean and standard deviation obtained respectively like 92.73  0.23, 89.05 0.67, 89.97 0.23 by using MLP and respectively like 95.96 0.09, 93.80 0.16, and 94.90 0.14 by using SVM.</p>As a result, using meditation can reduce the stress and anxiety of patients by effects on heart rate, and the treatment process speeds up and have an important role in improving the performance of the system.


Sign in / Sign up

Export Citation Format

Share Document