scholarly journals HRF - Small Mammal Ground Cover 1986-1990

2019 ◽  
Author(s):  
Keyword(s):  
2019 ◽  
Vol 65 (6) ◽  
pp. 796-804 ◽  
Author(s):  
Steven M Gray ◽  
Gary J Roloff ◽  
Andrew J Dennhardt ◽  
Brian P Dotters ◽  
Thomas T Engstrom

Abstract We evaluated how forest type, vegetation structure in trapping webs, and proximate forest types influenced localized (~6.35 hectares) abundances for commonly captured small mammals in northern California, USA. We trapped from May to August of 2011–13 in 69 forest patches that represented: (1) clearcuts (3–5 years postharvest), (2) 10–20 year-old conifer plantations, (3) rotation-aged conifer stands, and (4) Watercourse and Lake Protection Zones. We captured 11 species; four in sufficient numbers for regression modeling. Our average abundance estimates for the study were 4.57 (standard error [SE] = 0.43), 0.32 (SE = 0.11), 0.90 (SE = 0.30), and 0.25 (SE = 0.09) individuals per web location (~0.75 hectares) for Peromyscus spp., Neotoma spp., California ground squirrels, and Allen’s chipmunks. We found that web-level ground cover (shrubs and grass), downed wood, and types of forests containing our trapping webs best described small mammal abundances, whereas proximate forest types were not important. Our results indicated that retaining localized structures in the form of understory shrub cover and downed wood positively influences small mammal abundance in intensively managed forests of northern California.


Author(s):  
Hayley Lanier ◽  
Andy Kulikowski ◽  
R. Seville ◽  
Zachary Roehrs ◽  
Meredith Roehrs

Fires are an important and increasingly common driver of habitat structure in the intermountain West. Through an ongoing study of burned and adjacent unburned areas along the John D. Rockefeller, Jr. Memorial Parkway, we examine the long-term effects of the 1988 fire season on community assembly, succession, and ecological processes. We collected mark/recapture data on rodents, removal data for insectivorous mammals and invertebrates, and habitat measurements on four grids in 2014 and combined these results with previous survey data. In 2014, 4,800 trap nights yielded 13 species of small mammals, comprising 618 individuals. Macroarthropod abundance was higher on burned grids, but diversity was higher on unburned grids. In contrast, springtail (Collembola) diversity was higher on burned grids, but abundance was highest in unburned grids. Since the beginning of this long-term study, the total number of mammal species has increased across all sites, and relative abundance in burned areas has shifted from early successional species (Peromyscus maniculatus) to those more associated with old growth forests (such as Myodes gapperi). Other than in 1991, the burned grids have harbored more diverse small mammal communities than the unburned control grids. Significant, long-term differences in vegetation based upon burn history were observed, including different ground cover, less canopy cover, and more coarse woody debris in burned sites. This work provides a unique long-term picture of the interrelationships of small mammal and invertebrate communities and correlated habitat variables as these ecosystems undergo post-fire succession.


2017 ◽  
Vol 13 (5) ◽  
pp. 20170036 ◽  
Author(s):  
Clare Stawski ◽  
Taylor Hume ◽  
Gerhard Körtner ◽  
Shannon E. Currie ◽  
Julia Nowack ◽  
...  

To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities.


2008 ◽  
Vol 122 (2) ◽  
pp. 118 ◽  
Author(s):  
Christian Fortin ◽  
Denis Comeau

The Gaspé Shrew (Sorex gaspensis) is one of the rarest of Canadian small mammals. Consequently, little is known about its habitat preferences. This paper documents habitat parameters and small mammal species associated with the capture of nine specimens in the Gaspé Peninsula, Québec. Small mammals were collected using both pitfall traps and Victor snap traps at 22 sites during August and September 2005. A total of 571 small mammals representing 12 species was captured during 5637 trap nights. S. gaspensis specimens were trapped at sites located on hilly, rocky habitats. Microhabitat was cool and moist in all cases. Slope was always over 15 degrees and altitude ranged from 29 to 240 meters. Estimated percent of moss ground cover exceeded 50% in seven of the nine capture sites. Six S. gaspensis were trapped near running water while the others were captured far from streams. Overall, ten species of small mammals were captured in the same sites of S. gaspensis. Smoky Shrew (Sorex fumeus) was by far the most strongly associated species.


Author(s):  
Marco, A. Márquez-Linares ◽  
Jonathan G. Escobar--Flores ◽  
Sarahi Sandoval- Espinosa ◽  
Gustavo Pérez-Verdín

Objective: to determine the distribution of D. viscosa in the vicinity of the Guadalupe Victoria Dam in Durango, Mexico, for the years 1990, 2010 and 2017.Design/Methodology/Approach: Landsat satellite images were processed in order to carry out supervised classifications using an artificial neural network. Images from the years 1990, 2010 and 2017 were used to estimate ground cover of D. viscosa, pastures, crops, shrubs, and oak forest. This data was used to calculate the expansion of D. viscosa in the study area.Results/Study Limitations/Implications: the supervised classification with the artificial neural network was optimal after 400 iterations, obtaining the best overall precision of 84.5 % for 2017. This contrasted with the year 1990, when overall accuracy was low at 45 % due to less training sites (fewer than 100) recorded for each of the land cover classes.Findings/Conclusions: in 1990, D. viscosa was found on only five hectares, while by 2017 it had increased to 147 hectares. If the disturbance caused by overgrazing continues, and based on the distribution of D. viscosa, it is likely that in a few years it will have the ability to invade half the study area, occupying agricultural, forested, and shrub areas


2004 ◽  
Vol 155 (7) ◽  
pp. 284-289 ◽  
Author(s):  
Pietro Stanga ◽  
Niklaus Zbinden

The retrospective study based on aerial photos (1971–2001) of the Canton Tessin made it possible to measure and analyze the evolution of the vegetation of eleven Alpine zones. The analysis shows a strong expansion of the arborescent vegetation and, at the same time, a decrease in other forms of ground cover (bush, shrub, meadow and unproductive spaces). Analysis of the data gives rise to the conjecture that the strong evolutionary dynamism evidenced by the areas under investigation is a result of the vast clearings carried out in past centuries to create pastures. Following the subsequent decrease in human pressure, nature today is attempting to rebalance the level of the biomass. These processes manifest themselves in different ways and with various intensity, depending on the interaction of numerous factors (e.g. climatic conditions, site fertility, initial conditions, evolution of anthropological pressure, etc.).


Sign in / Sign up

Export Citation Format

Share Document