Estimating the noise immunity of spacecraft on-board repeaters and satellite earth stations under the influence of intentional interference

Author(s):  
D.G. Pantenkov

Civil, special and dual-use satellite communication systems are used everywhere in space, land, aviation and maritime means of transmitting information to remote subscribers. At the same time, during operation of these systems, one of the main issues is ensuring the required level of noise immunity of communication channels when operating in a complex electromagnetic environment, in conditions of both unintentional and intentional interference. This article proposes a technique for estimating the noise immunity of spacecraft on-board repeaters and satellite earth stations under the influence of intentional interference based on the application of the suppression coordinate law, which takes into account the probabilities of suppressing a useful communication signal depending on the coordinates of interference points by frequency, time, radiation power. The results of calculations and graphical dependencies based on results of mathematical simulation of impact efficiency on onboard repeaters of spacecraft and terrestrial stations of satellite communication of noise barrier by frequency of interference in modes of repeater functioning both with direct transfer of signal spectrum by frequency and with its processing on board are presented. At any stage of design of communication systems in the composition of various complexes of aviation, sea, land, space bases, it is possible to obtain estimates of their noise immunity, or vice versa, when designing electronic warfare, to obtain estimates of suppression of satellite communication systems according to the probability criterion.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hammed O Busari ◽  
Olaosebikan A Fakolujo

The progressively demand on satellite communication systems has consequently resulted in lower frequency bands getting more congested. The usage of frequency band beyond 10 GHz is in focus nowadays as a result of the rapid expansion of radio communication systems. However, Rain is the leading attenuation factor of different communication signal of frequencies beyond 10 GHz. Attenuation due to rain has a significant propagation effect that needs to be carefully considered in satellite communication system network. Rain attenuation predictions and rain rate are essential when planning microwave satellite communication links.  A review of the rain rate integration time and rain attenuation models for microwave and millimeter bands satellite system is presented.  Keywords: Frequency Band, Rain Attenuation, Rain Attenuation Model, Rain Rate, Satellite System


Author(s):  
Andrey Parshutkin ◽  
Dmitriy Buchinskiy

The paper describes the main ways of organizing modern satellite communication systems and the methods of synchronization and transmission of service information used in them, the frame synchronization mechanism from the view point of noise immunity. Based on the analysis, a block diagram of a simulation model is proposed for studying the influence of unintentional interference on the channels of modern satellite communication systems. The proposed model of the impact of non-stationary interference on a satellite communication channel takes into account the effect of interference on symbolic, frame synchronization, mechanisms for extracting frame boundaries, as well as the effect of modern error correction codes. The model allows evaluating the impact of non-stationary interference on both the information and the service side of the frame of modern systems of broadband satellite communications. As an indicator of the noise immunity of a satellite communication channel, there was used probability of frame loss, i.e. frame skipping due to a violation in the frame synchronization system, incorrect allocation of frame boundaries, or the presence of errors in the frame that were not repaired by corrective codes. Using this model, we studied the effect of non-stationary interference of various durations on the information and service parts of the frame, compared the results of the impact of non-stationary interferences of various durations with the effect of white Gaussian noise. It is shown that non-stationary interference, which are short noise pulses that do not affect the information part of the frame due to reparation by correction codes, can significantly reduce the reception quality due to disruption of frame synchronization and distortion of service information about the signal-code structure and frame length.


Author(s):  
B. G. Shadrin ◽  
◽  
D. E. Zachateyskiy ◽  
V. A. Dvoryanchikov Dvoryanchikov ◽  
◽  
...  

Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Sign in / Sign up

Export Citation Format

Share Document