scholarly journals Little Ice Age glaciers and climate in the Mediterranean mountains: a new analysis

2018 ◽  
Vol 44 (1) ◽  
pp. 15 ◽  
Author(s):  
P.D. Hughes

Glaciers were common across the Mediterranean mountains during the Little Ice Age. In parts of Turkey some glaciers were several kilometres longer than they are today, whilst in the Pyrenees glaciers were up to several hundred metres longer. In the wettest Mediterranean mountains, such as the Dinaric Alps, many small glaciers and perennial snow patches would have been present. Even in driest and most southerly mountains, such as the High Atlas, small glaciers and perennial snowfields were present. This paper examines the evidence from these two contrasting regions (the western and southern Balkans and the High Atlas) and the climatic significance of glaciers in these areas during the Little Ice Age. Particular focus is given on the climatological controls on glacier mass balance in different climatic conditions. Glaciers in cold and dry climates exhibit different sensitivity to regional climate change compared with glaciers in cold and wet climates. In addition, the factors controlling ablation of glaciers in different climatic regimes can differ considerably, especially the relative contributions and effects of melting and sublimation. All Mediterranean mountain glaciers were strongly controlled by local topoclimatic factors. Avalanche-fed glaciers have proven to be the most resilient to climate change and dramatically increased accumulation from avalanching snow explains the surviving glaciers in the Dinaric Alps and the semi-perennial snow fields of the High Atlas. In addition, geology as well as landscape morphology inherited from Pleistocene glaciations plays a role in explaining the patterns of Little Ice Age glacier distribution and especially the patterns of retreat and survival of these glaciers. The resilience of some of the last remaining Mediterranean glaciers, in the face of warming climate, presents a contradiction and comparisons between glaciers gone and those that remain provides important insight into the future of similar glaciers globally.

Author(s):  
S. P. Holoborodko ◽  
O. M. Dymov

The article presents the results of scientific research to specify the seed productivity of alfalfa grown on irrigated and rainfed lands of the southern Steppe of Ukraine. It is proved that obtaining stably high yields of conditioned alfalfa seeds under the conditions of regional climate change is possible only providing an optimal supply of productive moisture in the soil, since in recent years the crop has been grown under high temperature conditions and insufficient precipitation. It was established that irrigation of seed alfalfa throughout the growing season regardless of cultivar and mowing, should be conducted in two interphase periods: "the beginning of regrowth (shoots) – early budding" and "the beginning of budding – beginning of flowering". In the first interphase period, it is necessary to create conditions for optimal growth and development of plants that is achieved by maintaining the level of pre-irrigation humidity in 0-100 cm layer in the range of 70-75% MMHC on dark chestnut soils and 55-60% – on sandy loam chernozems. In the second interphase period, it is necessary to provide optimal conditions for the development of production processes and the formation of conditioned seed yields that is achieved by inhibiting growth processes, since alfalfa tends to grow up. Therefore, the level of pre-irrigation humidity of the calculated layer on medium and heavy loamy soils should be maintained within 60-65% MMHC and 45-50% MMHC – on sandy loam chernozems. The analysis of changes in natural and climatic conditions carried out over the past years shows that in the subzone of the southern Steppe, alfalfa cultivation for seeds is possible only by providing the developed irrigated agriculture. Getting the deficit of natural moisture solved, combined with high availability of heat resources and fertile dark‑chestnut soils and southern chernozems, is an objective natural prerequisite for further growth of seed productivity of alfalfa and reducing its dependence on extreme weather conditions and, above all, in medium‑dry (75%) and dry (95%) precipitation years.


2013 ◽  
Vol 94 (1) ◽  
pp. 65-81 ◽  
Author(s):  
S. Gualdi ◽  
S. Somot ◽  
L. Li ◽  
V. Artale ◽  
M. Adani ◽  
...  

In this article, the authors describe an innovative multimodel system developed within the Climate Change and Impact Research: The Mediterranean Environment (CIRCE) European Union (EU) Sixth Framework Programme (FP6) project and used to produce simulations of the Mediterranean Sea regional climate. The models include high-resolution Mediterranean Sea components, which allow assessment of the role of the basin and in particular of the air–sea feedbacks in the climate of the region. The models have been integrated from 1951 to 2050, using observed radiative forcings during the first half of the simulation period and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario during the second half. The projections show a substantial warming (about 1.5°–2°C) and a significant decrease of precipitation (about 5%) in the region for the scenario period. However, locally the changes might be even larger. In the same period, the projected surface net heat loss decreases, leading to a weaker cooling of the Mediterranean Sea by the atmosphere, whereas the water budget appears to increase, leading the basin to lose more water through its surface than in the past. Overall, these results are consistent with the findings of previous scenario simulations, such as the Prediction of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects (PRUDENCE), Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES), and phase 3 of the Coupled Model Intercomparison Project (CMIP3). The agreement suggests that these findings are robust to substantial changes in the configuration of the models used to make the simulations. Finally, the models produce a 2021–50 mean steric sea level rise that ranges between +7 and +12 cm, with respect to the period of reference.


2014 ◽  
Vol 8 (3) ◽  
pp. 941-958 ◽  
Author(s):  
A. J. Wiltshire

Abstract. The Hindu Kush, Karakoram, and Himalaya (HKH) region has a negative average glacial mass balance for the present day despite anomalous possible gains in the Karakoram. However, changes in climate over the 21st century may influence the mass balance across the HKH. This study uses regional climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated positive degree days for the Hindu Kush (HK), Karakoram (KK), Jammu–Kashmir (JK), Himachal Pradesh and West Nepal regions (HP), and East Nepal and Bhutan (NB). The analysis focuses on the climate drivers of change rather than the glaciological response. Presented is a complex regional pattern of climate change, with a possible increase in snowfall over the western HKH and decreases in the east. Accumulated degree days are less spatially variable than precipitation and show an increase in potential ablation in all regions combined with increases in the length of the seasonal melt period. From the projected change in regional climate the possible implications for future glacier mass balance are inferred. Overall, within the modelling framework used here the eastern Himalayan glaciers (Nepal–Bhutan) are the most vulnerable to climate change due to the decreased snowfall and increased ablation associated with warming. The eastern glaciers are therefore projected to decline over the 21st Century despite increasing precipitation. The western glaciers (Hindu Kush, Karakoram) are expected to decline at a slower rate over the 21st century in response to unmitigated climate compared to the glaciers of the east. Importantly, regional climate change is highly uncertain, especially in important cryospheric drivers such as snowfall timing and amounts, which are poorly constrained by observations. Data are available from the author on request.


2021 ◽  
Author(s):  
Christina Asmus ◽  
Peter Hoffmann ◽  
Joni-Pekka Pietikäinen ◽  
Jürgen Böhner ◽  
Diana Rechid

<p><span>Irrigation is a common </span><span>land use </span><span>practice to adapt agriculture to unsuitable climatic conditions. It is highly relevant to ensure food production. Due to the growing population and its food demand in the future, as well as due to climate change, the irrigated area</span><span>s</span> <span>are</span><span> expected to increase </span><span>globally</span><span>. Therefore, it is important to understand the effects of irrigation on the climate system. Irrigation of cropland alters the biogeophysical properties of the land surface and the soil. Due to the land-atmosphere interactions, these alterations </span><span>have the potential to</span><span> affect the atmosphere directly or through feedback processes. Various studies point out that the effects of irrigation, like temperature reduction, are particularly pronounced on local to regional scales where they bear a mitigation potential to regional climate change. </span></p><p><span>This study aims to investigate the effects of irrigation on the regional climate. To model these effects, we developed and implemented a new flexible irrigation parameterization into the regional climate model REMO. In our setup, REMO is interactively coupled to the mosaic-based vegetation module iMOVE, enabling the calculation of irrigation effects and feedbacks on land, vegetation, and atmosphere. Multiple simulations for specific climatic conditions with </span><span>and without </span><span>the </span><span>new</span><span> irrigation parameterization are conducted on 0.11° resolution for the ”Greater Alpine Region“, which includes some of Europe‘s most intensively irrigated areas like the Po valley in Northern Italy. The differences between these simulations are analyzed to identify and quantify irrigation effects on atmospheric processes. </span></p><p><span>The </span><span>new irrigation parameterization will be introduced and the</span><span> analysis </span><span>of the irrigation effects</span> <span>on the regional climate in the “Greater Alpine Region” </span><span>will be presented. </span></p>


2019 ◽  
Vol 13 (1) ◽  
pp. 45-55
Author(s):  
Gheorghe Duca ◽  
Maria Nedealcov ◽  
Serghei Travin ◽  
Viorica Gladchi

Abstract The actual period marred by the global warming requires expanding our knowledge on the regional particularities of climate changes manifestations as consequences of global climatic changes. It was stated that within the limits of Republic of Moldova’s territory the pace of warming is much more accelerated than the global one. These consequences, in their turn, had led to the increase in degree of evaporation of surface waters, which had conditioned the doubling of still water’s pollution in the region (Lake Beleu). We consider that the obtained results could contribute to the adequate management of water resources in the new climatic conditions.


2015 ◽  
Vol 45 (4) ◽  
pp. 459-484 ◽  
Author(s):  
Dagomar Degroot

Although interdisciplinary scholars have firmly established the existence of an early modern Little Ice Age, methodologies that link climate, weather, and human history remain in their infancy. Journals kept during three Dutch expeditions to find a northeast passage through the Arctic between 1594 and 1597 demonstrate the complexity of establishing relationships between climate and human affairs. They confirm scientific reconstructions of the Little Ice Age in the Arctic, but they also record counterintuitive relationships between regional climate and local environments. These local manifestations of climate change shaped the course of the Dutch quest for a northeast passage in the 1590s, with important ramifications for Dutch economic and intellectual history. The journals reveal that historians must carefully establish distinct relationships between shifting environmental conditions and human activities across different scales before attempting to tie climate change to human history.


2013 ◽  
Vol 122 (1-2) ◽  
pp. 185-199 ◽  
Author(s):  
J. Bedia ◽  
S. Herrera ◽  
A. Camia ◽  
J. M. Moreno ◽  
J. M. Gutiérrez

2021 ◽  
pp. 22-35
Author(s):  
Ashna Francis

Gun Island is a story of travel and migrations, overlaid with myth and folktales, and the deepening crisis of climate change. It presents an intricately interwoven plot which connects human and animal, past and present, natural and the supernatural. This paper attempts to explore how the notion of interconnectedness manifests itself in each of these elements. Gun Island uses the myth of the Gun Merchant as a nexus to draw parallels between the Little Ice Age and our present-day scenario where droughts, floods, cyclones, wildfires and epidemics have become a part of our everyday lives. Gun Island projects unprecedented climatic conditions as the primary cause for these natural disasters. It becomes a clarion call for climate induced migrations as it skillfully portrays people and entire communities being uprooted from their native land and the drastic changes in the migratory patterns of different species due to changing climes and warming waters. Instead of projecting warnings of impending doom and apocalypse Gun Island focuses on giving the readers hope for a better tomorrow.


Sign in / Sign up

Export Citation Format

Share Document