scholarly journals Water consumption and irrigation regime of seed alfalfa under the conditions of regional climate change in the southern Steppe of Ukraine

Author(s):  
S. P. Holoborodko ◽  
O. M. Dymov

The article presents the results of scientific research to specify the seed productivity of alfalfa grown on irrigated and rainfed lands of the southern Steppe of Ukraine. It is proved that obtaining stably high yields of conditioned alfalfa seeds under the conditions of regional climate change is possible only providing an optimal supply of productive moisture in the soil, since in recent years the crop has been grown under high temperature conditions and insufficient precipitation. It was established that irrigation of seed alfalfa throughout the growing season regardless of cultivar and mowing, should be conducted in two interphase periods: "the beginning of regrowth (shoots) – early budding" and "the beginning of budding – beginning of flowering". In the first interphase period, it is necessary to create conditions for optimal growth and development of plants that is achieved by maintaining the level of pre-irrigation humidity in 0-100 cm layer in the range of 70-75% MMHC on dark chestnut soils and 55-60% – on sandy loam chernozems. In the second interphase period, it is necessary to provide optimal conditions for the development of production processes and the formation of conditioned seed yields that is achieved by inhibiting growth processes, since alfalfa tends to grow up. Therefore, the level of pre-irrigation humidity of the calculated layer on medium and heavy loamy soils should be maintained within 60-65% MMHC and 45-50% MMHC – on sandy loam chernozems. The analysis of changes in natural and climatic conditions carried out over the past years shows that in the subzone of the southern Steppe, alfalfa cultivation for seeds is possible only by providing the developed irrigated agriculture. Getting the deficit of natural moisture solved, combined with high availability of heat resources and fertile dark‑chestnut soils and southern chernozems, is an objective natural prerequisite for further growth of seed productivity of alfalfa and reducing its dependence on extreme weather conditions and, above all, in medium‑dry (75%) and dry (95%) precipitation years.

2021 ◽  
Author(s):  
Christina Asmus ◽  
Peter Hoffmann ◽  
Joni-Pekka Pietikäinen ◽  
Jürgen Böhner ◽  
Diana Rechid

<p><span>Irrigation is a common </span><span>land use </span><span>practice to adapt agriculture to unsuitable climatic conditions. It is highly relevant to ensure food production. Due to the growing population and its food demand in the future, as well as due to climate change, the irrigated area</span><span>s</span> <span>are</span><span> expected to increase </span><span>globally</span><span>. Therefore, it is important to understand the effects of irrigation on the climate system. Irrigation of cropland alters the biogeophysical properties of the land surface and the soil. Due to the land-atmosphere interactions, these alterations </span><span>have the potential to</span><span> affect the atmosphere directly or through feedback processes. Various studies point out that the effects of irrigation, like temperature reduction, are particularly pronounced on local to regional scales where they bear a mitigation potential to regional climate change. </span></p><p><span>This study aims to investigate the effects of irrigation on the regional climate. To model these effects, we developed and implemented a new flexible irrigation parameterization into the regional climate model REMO. In our setup, REMO is interactively coupled to the mosaic-based vegetation module iMOVE, enabling the calculation of irrigation effects and feedbacks on land, vegetation, and atmosphere. Multiple simulations for specific climatic conditions with </span><span>and without </span><span>the </span><span>new</span><span> irrigation parameterization are conducted on 0.11° resolution for the ”Greater Alpine Region“, which includes some of Europe‘s most intensively irrigated areas like the Po valley in Northern Italy. The differences between these simulations are analyzed to identify and quantify irrigation effects on atmospheric processes. </span></p><p><span>The </span><span>new irrigation parameterization will be introduced and the</span><span> analysis </span><span>of the irrigation effects</span> <span>on the regional climate in the “Greater Alpine Region” </span><span>will be presented. </span></p>


2018 ◽  
Vol 44 (1) ◽  
pp. 15 ◽  
Author(s):  
P.D. Hughes

Glaciers were common across the Mediterranean mountains during the Little Ice Age. In parts of Turkey some glaciers were several kilometres longer than they are today, whilst in the Pyrenees glaciers were up to several hundred metres longer. In the wettest Mediterranean mountains, such as the Dinaric Alps, many small glaciers and perennial snow patches would have been present. Even in driest and most southerly mountains, such as the High Atlas, small glaciers and perennial snowfields were present. This paper examines the evidence from these two contrasting regions (the western and southern Balkans and the High Atlas) and the climatic significance of glaciers in these areas during the Little Ice Age. Particular focus is given on the climatological controls on glacier mass balance in different climatic conditions. Glaciers in cold and dry climates exhibit different sensitivity to regional climate change compared with glaciers in cold and wet climates. In addition, the factors controlling ablation of glaciers in different climatic regimes can differ considerably, especially the relative contributions and effects of melting and sublimation. All Mediterranean mountain glaciers were strongly controlled by local topoclimatic factors. Avalanche-fed glaciers have proven to be the most resilient to climate change and dramatically increased accumulation from avalanching snow explains the surviving glaciers in the Dinaric Alps and the semi-perennial snow fields of the High Atlas. In addition, geology as well as landscape morphology inherited from Pleistocene glaciations plays a role in explaining the patterns of Little Ice Age glacier distribution and especially the patterns of retreat and survival of these glaciers. The resilience of some of the last remaining Mediterranean glaciers, in the face of warming climate, presents a contradiction and comparisons between glaciers gone and those that remain provides important insight into the future of similar glaciers globally.


2019 ◽  
Vol 13 (1) ◽  
pp. 45-55
Author(s):  
Gheorghe Duca ◽  
Maria Nedealcov ◽  
Serghei Travin ◽  
Viorica Gladchi

Abstract The actual period marred by the global warming requires expanding our knowledge on the regional particularities of climate changes manifestations as consequences of global climatic changes. It was stated that within the limits of Republic of Moldova’s territory the pace of warming is much more accelerated than the global one. These consequences, in their turn, had led to the increase in degree of evaporation of surface waters, which had conditioned the doubling of still water’s pollution in the region (Lake Beleu). We consider that the obtained results could contribute to the adequate management of water resources in the new climatic conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3704
Author(s):  
Agnieszka Karman ◽  
Andrzej Miszczuk ◽  
Urszula Bronisz

The article deals with the competitiveness of regions in the face of climate change. The aim was to present the concept of measuring the Regional Climate Change Competitiveness Index. We used a comparative and logical analysis of the concept of regional competitiveness and heuristic conceptual methods to construct the index and measurement scale. The structure of the index includes six broad sub-indexes: Basic, Natural, Efficiency, Innovation, Sectoral, Social, and 89 indicators. A practical application of the model was presented for the Mazowieckie province in Poland. This allowed the region’s performance in the context of climate change to be presented, and regional weaknesses in the process of adaptation to climate change to be identified. The conclusions of the research confirm the possibility of applying the Regional Climate Change Competitiveness Index in the economic analysis and strategic planning. The presented model constitutes one of the earliest tools for the evaluation of climate change competitiveness at a regional level.


2017 ◽  
Vol 17 (6) ◽  
pp. 1563-1568 ◽  
Author(s):  
Christopher P. O. Reyer ◽  
Kanta Kumari Rigaud ◽  
Erick Fernandes ◽  
William Hare ◽  
Olivia Serdeczny ◽  
...  

2012 ◽  
Vol 40-41 ◽  
pp. 32-46 ◽  
Author(s):  
M. Zampieri ◽  
F. Giorgi ◽  
P. Lionello ◽  
G. Nikulin

Sign in / Sign up

Export Citation Format

Share Document