Determining the Optimum Energy Performance of an On-Board Cryogenic Cooler

Author(s):  
Dmitriy A. Uglanov ◽  
Viktor V Urlapkin ◽  
Sergey S Korneev ◽  
Elizaveta A. Marakhova
Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2803
Author(s):  
Despoina I. Batsouli ◽  
Anastasios C. Patsidis ◽  
Georgios C. Psarras

Compact capacitive energy storing/harvesting systems could play a key role in the urgent need for more energy-efficient technologies to address both energy and environmental issues. Therein, the purpose of the present work is to develop and investigate epoxy/BaMnO4 nanocomposites at various filler concentrations, which could be applicable as compact materials systems for energy storage and harvesting. Broadband dielectric spectroscopy was used for studying the dielectric properties and the relaxation processes of the examined nanodielectrics. The energy storing/retrieving ability of the nanocomposites was also evaluated via DC charge–discharge experiments. The coefficient of energy efficiency (neff) was found for all prepared nanocomposites to evaluate the energy performance of the systems. Dielectric data divulge the existence of two matrix-related relaxations, i.e., α-mode and β-mode, attributed to the glass-to-rubber transition of the polymer matrix and re-orientation of polar side groups, respectively. Interfacial polarization was also identified in the low-frequency and high-temperature region. The 7 phr BaMnO4 nanocomposite exhibits the best performance in terms of the stored and harvested energies compared to all systems. On the other hand, the 5 phr, 3 phr and 1 phr nanocomposites display optimum energy performance, reaching high values of neff.


2014 ◽  
Vol 899 ◽  
pp. 87-92
Author(s):  
Krisztina Severnyak

As energy efficiency is becoming an increasingly important feature, buildings are expected to comply with several criteria and requirements and these criteria are changed and extended with time. The Directive 2002/91/EC of the European Parliament and Commission on the energy performance of buildings and the Directive 2010/31/EU request Member States to apply minimum energy performance requirements. These minimum requirements are indeed applied all over the European Union and should be regularly reviewed. Our research aimed at clarifying whether optimum cost and/or energy efficiency represents the next step towards actual energy efficiency. The Directive brought forth an aspect that should have been prioritized long ago already: Are the construction and refurbishment of buildings in Europe economically feasible? The methodology prescribed by the Directive leaves several questions open and provokes further research. The methodology uses costs only as the basis for examining energy consumption and emissions related to already existing, newly constructed or refurbished buildings or refurbishment options. Optimum cost does not necessarily correspond to optimum energy or environmental performance. The price of materials and equipment built in does not always reflect the energy built in or environmental advantages. Subsidies to promote energy efficiency may bias optimum costs. Viewing optimums from the broader aspect of energy consumption, proper results are only yielded by analyses completed for the entire life cycle of buildings. This way, we may decide which characteristics attribute more to a low energy and emission status, i.e. state-of-the-art construction technology or traditional, natural constructing methods such as those used for „conservative eco buildings.” [1]


2020 ◽  
Vol 12 (14) ◽  
pp. 5764
Author(s):  
Purvesh Bharadwaj ◽  
Ljubomir Jankovic

Traditionally, the uniform application of thermal insulation is practised within the built environment sector to achieve desired building regulation standards for energy efficiency. However, that approach does not follow the building heat loss field, and it is therefore poorly matched to the actual heat loss from the building, thus achieving sub-optimum energy performance. This research aims to visualise building heat loss field in three dimensions and to create self-organised thermal insulation patterns that are proportional in thickness to the intensity of heat loss. This is achieved using a 3D agent-based model, in which each agent that represents a miniature object of thermal insulation moves up the gradient of the heat loss representation and competes for its position with the neighbouring thermal insulation components, depending upon the gradient intensity. This creates a self-organised thermal insulation pattern through the competition between the thermal insulation components and through overcrowding in the areas with higher heat loss intensity. This helps to visualise the heat loss field and create a representation of thermal insulation that is ideally matched to it. The result is assessed for its energy performance using a conventional energy performance analysis. That analysis shows that this approach leads to reductions in energy consumption and carbon emissions in comparison with the conventional approach that uses the same amount of thermal insulation material. The overall result increases our understanding of 3D heat loss and introduces a new approach for designing building thermal insulation.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Sign in / Sign up

Export Citation Format

Share Document