scholarly journals Burr XII Fréchet Distribution: Properties, Bayesian and Classical Estimation

Author(s):  
Mohamed Ibrahim Mohamed

In this work, we introduce a new extension of the Fréchet distribution. A sufficient set of the mathematical and statistical properties have been derived. The estimation of the parameters is carried out by considering the different method of estimation. The performances of the proposed estimation methods are studied by Monte Carlo simulations. The potentiality of the proposed model has been analyzed through two data sets. The weighted least square method is the best method for modelling breaking stress data, the least square method is the best method for modelling strengths data, however all other methods performed well for both data sets. On the other hand, the new model gives the best …ts among all other …fitted extensions of the Fréchet models to these data. So, it could be chosen as the best model for modeling breaking stress and strengths real data.

2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


2018 ◽  
Vol 8 (1) ◽  
pp. 44
Author(s):  
Lutfiah Ismail Al turk

In this paper, a Nonhomogeneous Poisson Process (NHPP) reliability model based on the two-parameter Log-Logistic (LL) distribution is considered. The essential model’s characteristics are derived and represented graphically. The parameters of the model are estimated by the Maximum Likelihood (ML) and Non-linear Least Square (NLS) estimation methods for the case of time domain data. An application to show the flexibility of the considered model are conducted based on five real data sets and using three evaluation criteria. We hope this model will help as an alternative model to other useful reliability models for describing real data in reliability engineering area.


Author(s):  
Brijesh P. Singh

Population scientists are generally developing mathematical models/techniques in demography and to provide brief explanation of extensive data sets. The prime objective of the present paper is to propose a probability model to illustrate the distribution of female’s age at first menstrual onset. Menarcheal age distribution is used to evaluate risk associated to reproductive issues and may be used as a demographic indicator of female fecundity. The suitability of proposed model is tested with the real data sets. Parameters of the proposed distribution have been estimated through least square estimation technique. It is observed that older female’s age at menarche is somewhat higher than the younger female’s age at menarche. Also we have constructed a life table for menarcheal age using a probability model. This life table is enable to provide expected duration of getting menarche for a girl of a particular age.


Author(s):  
Ehab Mohamed Almetwally ◽  
Ahmed Z. Afify ◽  
G. G. Hamedani

In this paper, we introduce a new there-parameter Rayleigh distribution, called the Marshall-Olkin alpha power Rayleigh (MOAPR) distribution. Some statistical properties of the MOAPR distribution are obtained. The proposed model is characterized based on truncated moments and reverse hazard function. The maximum likelihood and bootstrap estimation methods are considered to estimate the MOPAR parameters. A Monte Carlo simulation study is performed to compare the maximum likelihood and bootstrap estimation methods. Superiority of the MOAPR distribution over some well-known distributions is illustrated by means of two real data sets.


2019 ◽  
Vol 17 (1) ◽  
pp. 700-715
Author(s):  
Hayrinisa Demirci Biçer

Abstract In the present paper, we introduce a new form of generalized Rayleigh distribution called the Alpha Power generalized Rayleigh (APGR) distribution by following the idea of extension of the distribution families with the Alpha Power transformation. The introduced distribution has the more general form than both the Rayleigh and generalized Rayleigh distributions and provides a better fit than the Rayleigh and generalized Rayleigh distributions for more various forms of the data sets. In the paper, we also obtain explicit forms of some important statistical characteristics of the APGR distribution such as hazard function, survival function, mode, moments, characteristic function, Shannon and Rényi entropies, stress-strength probability, Lorenz and Bonferroni curves and order statistics. The statistical inference problem for the APGR distribution is investigated by using the maximum likelihood and least-square methods. The estimation performances of the obtained estimators are compared based on the bias and mean square error criteria by a conducted Monte-Carlo simulation on small, moderate and large sample sizes. Finally, a real data analysis is given to show how the proposed model works in practice.


2019 ◽  
Vol 42 (2) ◽  
pp. 225-243
Author(s):  
Emilio A. Coelho-Barros ◽  
Jorge A. Achcar ◽  
Edson Z. Martinez ◽  
Nasser Davarzani ◽  
Heike I. Grabsch

In this paper, we introduce a Bayesian approach for segmented Weibull distributions which could be a good alternative to analyze medical survival data in the presence of censored observations and covariates. With the obtained Bayesian estimated change-points we could get an excellent fit of the proposed model to any data sets. With the proposed methodology, it is also possible to identify survival times intervals where a covariate could have significantly different efects when compared to other lifetime intervals, an important point under a clinical view. The obtained Bayesian estimates are obtained using standard Markov Chain Monte Carlo methods. Some examples with real data sets illustrate the proposed methodology and its potential clinical value.


Author(s):  
Hisham Mohamed Almongy ◽  
Ehab Mohamed Almetwally ◽  
Amaal Elsayed Mubarak

In this paper, we introduce and study a new extension of Lomax distribution with four-parameter named as the Marshall–Olkin alpha power Lomax (MOAPL) distribution. Some statistical properties of this distribution are discussed. Maximum likelihood estimation (MLE), maximum product spacing (MPS) and least Square (LS) method for the MOAPL distribution parameters are discussed. A numerical study using real data analysis and Monte-Carlo simulation are performed to compare between different methods of estimation. Superiority of the new model over some well-known distributions are illustrated by physics and economics real data sets. The MOAPL model can produce better fits than some well-known distributions as Marshall–Olkin Lomax, alpha power Lomax, Lomax distribution, Marshall–Olkin alpha power exponential, Kumaraswamy-generalized Lomax, exponentiated  Lomax  and power Lomax.


Author(s):  
Muhammad Ahsan ul Haq ◽  
Mohammed Albassam ◽  
Muhammad Aslam ◽  
Sharqa Hashmi

This article introduces a new unit distribution namely odd Fréchet power (OFrPF) distribution. Numerous properties of the proposed model including reliability analysis, moments, and Rényi Entropy for the proposed distribution. The parameters of the OFrPF distribution are obtained using different approaches such as maximum likelihood, least squares, weighted least squares, percentile, Cramer-von Mises, Anderson-Darling. Furthermore, a simulation was performed to study the performance of the suggested model. We also perform a simulation study to analyze the performances of estimation methods derived. The applications are used to show the practicality of OFrPF distribution using two real data sets. OFrPF distribution performed better than other competitive models.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246969
Author(s):  
M. S. Eliwa ◽  
Emrah Altun ◽  
Ziyad Ali Alhussain ◽  
Essam A. Ahmed ◽  
Mukhtar M. Salah ◽  
...  

Lifetime distributions are an important statistical tools to model the different characteristics of lifetime data sets. The statistical literature contains very sophisticated distributions to analyze these kind of data sets. However, these distributions have many parameters which cause a problem in estimation step. To open a new opportunity in modeling these kind of data sets, we propose a new extension of half-logistic distribution by using the odd Lindley-G family of distributions. The proposed distribution has only one parameter and simple mathematical forms. The statistical properties of the proposed distributions, including complete and incomplete moments, quantile function and Rényi entropy, are studied in detail. The unknown model parameter is estimated by using the different estimation methods, namely, maximum likelihood, least square, weighted least square and Cramer-von Mises. The extensive simulation study is given to compare the finite sample performance of parameter estimation methods based on the complete and progressive Type-II censored samples. Additionally, a new log-location-scale regression model is introduced based on a new distribution. The residual analysis of a new regression model is given comprehensively. To convince the readers in favour of the proposed distribution, three real data sets are analyzed and compared with competitive models. Empirical findings show that the proposed one-parameter lifetime distribution produces better results than the other extensions of half-logistic distribution.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


Sign in / Sign up

Export Citation Format

Share Document