scholarly journals Sistem Monitoring Heart Rate dan Oksigen Dalam Darah Berbasis LoRa

Author(s):  
Inda Rusdia Sofiani ◽  
Rafli Kharisma ◽  
Lailis Syafa'ah
Keyword(s):  

Sistem monitoring detak jantung dan oksigen adalah sebuah sistem yang dapat mendeteksi atau memantau kondisi denyut jantung pasien dan kadar oksigen dalam darah dengan memanfaatkan aplikasi android dan jangkauan Lora Ra-02 sebagai komunikasi pengiriman data sehingga dokter dapat memantau kondisi pasien berdasarkan parameter tersebut. Pemeriksaan kadar oksigen dalam darah merupakan parameter tanda vital yang mendasar bagi paramedis dalam menentukan kondisi pasien tersebut. Pemeriksaan heart rate dan oksigen yang dilakukan oleh perawat atau dokter pada umumnya masih menggunakan alat elektrokardiogram dan blood oximeter sehingga masih perlu dicek secara manual dengan rutin dan berkelanjutan. Untuk itu dengan mempertimbangkan keakuratan dan lebih terkontrolnya pengukuran detak jantung dan level oksien secara real time, alat monitoring ini dibuat. Penujian dilakukan melalui keakuratan peniriman data dari alat ke sistem android dan jua dipertimbangkan pula kemungkinan banyaknya data yang hilang dalam setiap pengiriman. Dari hasil pengujian yang telah dilakukan menggunakan 10 parameter didapatkan nilai persentase error heart rate sebesar 4,78% dan oksigen sebesar 1,94% dan berdasarkan 5 kategori pengujian. Secara keseluruhan terdapat kekurangan pembacaan yang dipenaruhi jarak transmitter ke receiver.

2000 ◽  
Author(s):  
K. Zaglaniczny ◽  
W. Shoemaker ◽  
D. S. Gorguze ◽  
C. Woo ◽  
J. Colombo

Author(s):  
Nobuki Hashiguchi ◽  
Lim Yeongjoo ◽  
Cyo Sya ◽  
Shinichi Kuroishi ◽  
Yasuhiro Miyazaki ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 999
Author(s):  
Henry Dore ◽  
Rodrigo Aviles-Espinosa ◽  
Zhenhua Luo ◽  
Oana Anton ◽  
Heike Rabe ◽  
...  

Heart rate monitoring is the predominant quantitative health indicator of a newborn in the delivery room. A rapid and accurate heart rate measurement is vital during the first minutes after birth. Clinical recommendations suggest that electrocardiogram (ECG) monitoring should be widely adopted in the neonatal intensive care unit to reduce infant mortality and improve long term health outcomes in births that require intervention. Novel non-contact electrocardiogram sensors can reduce the time from birth to heart rate reading as well as providing unobtrusive and continuous monitoring during intervention. In this work we report the design and development of a solution to provide high resolution, real time electrocardiogram data to the clinicians within the delivery room using non-contact electric potential sensors embedded in a neonatal intensive care unit mattress. A real-time high-resolution electrocardiogram acquisition solution based on a low power embedded system was developed and textile embedded electrodes were fabricated and characterised. Proof of concept tests were carried out on simulated and human cardiac signals, producing electrocardiograms suitable for the calculation of heart rate having an accuracy within ±1 beat per minute using a test ECG signal, ECG recordings from a human volunteer with a correlation coefficient of ~ 87% proved accurate beat to beat morphology reproduction of the waveform without morphological alterations and a time from application to heart rate display below 6 s. This provides evidence that flexible non-contact textile-based electrodes can be embedded in wearable devices for assisting births through heart rate monitoring and serves as a proof of concept for a complete neonate electrocardiogram monitoring system.


Author(s):  
Pramudya Rakhmadyansyah Sofyan ◽  
Rizdha Wahyudi ◽  
Diandri Perkasa Putra ◽  
Alvin Sahroni ◽  
Nur Widiasmara ◽  
...  

Author(s):  
Yourui Tong ◽  
Bochen Jia ◽  
Yi Wang ◽  
Si Yang

To help automated vehicles learn surrounding environments via V2X communications, it is important to detect and transfer pedestrian situation awareness to the related vehicles. Based on the characteristics of pedestrians, a real-time algorithm was developed to detect pedestrian situation awareness. In the study, the heart rate variability (HRV) and phone position were used to understand the mental state and distractions of pedestrians. The HRV analysis was used to detect the fatigue and alert state of the pedestrian, and the phone position was used to define the phone distractions of the pedestrian. A Support Vector Machine algorithm was used to classify the pedestrian’s mental state. The results indicated a good performance with 86% prediction accuracy. The developed algorithm shows high applicability to detect the pedestrian’s situation awareness in real-time, which would further extend our understanding on V2X employment and automated vehicle design.


2018 ◽  
Vol 210 ◽  
pp. 01006
Author(s):  
Miguel G. Molina ◽  
Priscila E. Garzón ◽  
Carolina J. Molina ◽  
Juan X. Nicola

With the uprising of Internet of Things (IoT) networks, new applications have taken advantage of this new concept. Having all devices and all people connected 24/7 have several advantages in a variated amount of disciplines. One of them is medicine and the e-health concept. The possibility of having a real time lecture of the vital signs of people can prevent a live threat situation. This paper describes the realization of a device capable of measuring the heart rate of a person and checking for abnormalities that may negatively affect the patient’s well-being. This project will make use of electronic devices known as microcontrollers, specifically from the Arduino family, enabling us to capture data, and, with the help of a network card and a RJ-45 cable, transfer it to a PC and visualize the heart rate in real time over its assigned IP address.


Author(s):  
Claire E Fishman ◽  
Danielle D Weinberg ◽  
Ashley Murray ◽  
Elizabeth E Foglia

ObjectiveTo assess the accuracy of real-time delivery room resuscitation documentation.DesignRetrospective observational study.SettingLevel 3 academic neonatal intensive care unit.ParticipantsFifty infants with video recording of neonatal resuscitation.Main outcome measuresVital sign assessments and interventions performed during resuscitation. The accuracy of written documentation was compared with video gold standard.ResultsTiming of initial heart rate assessment agreed with video in 44/50 (88%) records; the documented heart rate was correct in 34/44 (77%) of these. Heart rate and oxygen saturation were documented at 5 min of life in 90% of resuscitations. Of these, 100% of heart rate and 93% of oxygen saturation values were correctly recorded. Written records accurately reflected the mode(s) of respiratory support for 89%–100%, procedures for 91%–100% and medications for 100% of events.ConclusionReal-time documentation correctly reflects interventions performed during delivery room resuscitation but is less accurate for early vital sign assessments.


Sign in / Sign up

Export Citation Format

Share Document