scholarly journals Aerosolized type II transmembrane serine protease 2 inhibitor to combat COVID-19: a proposal

2021 ◽  
Vol 8 (12) ◽  
pp. 1996
Author(s):  
Chandan Raybarman ◽  
Surajit Bhattacharjee

Type II transmembrane serine protease (TMPRSS2) is expressed at the cell surface with COVID-19 infection. And COVID-19 infection misuse TMPRSS2 to advance their spread, making this protease potential focuses for intervention in COVID-19 infection. TMPRSS2 blocker may be the appropriate option to arrest cellular entry of COVID-19 by deregulating spike priming. Therefore a trial may be intended to watch the adequacy of aerosolized spraying of TMPRSS2 inhibitors to break the viral entry to the objective cells that empower to break the COVID-19 transmission. Targeting TMPRSS2 through aerosolized TMPRSS2 inhibitor is important to examine a possibly viable remedial technique in the treatment of COVID-19.

2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.


2010 ◽  
Vol 10 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Andrew Sanders ◽  
Siobhan Webb ◽  
Christian Parr ◽  
Malcolm Mason ◽  
Wen Jiang

2012 ◽  
Vol 393 (9) ◽  
pp. 907-914 ◽  
Author(s):  
Anke Ohler ◽  
Christoph Becker-Pauly

Abstract Proteolytic enzymes are involved in almost all biological processes reflecting their importance in health and disease. The human genome contains nearly 600 protease-encoding genes forming more than 2% of the total human proteome. The serine proteases, with about 180 members, built the oldest and second largest family of human proteases. Ten years ago, a novel serine protease family named the type II transmembrane family (TTSP) was identified. This minireview summarizes the up-to-date knowledge about the still growing TTSPs, particularly focusing on the pathophysiological functions of the family member type II transmembrane serine protease (TMPRSS) 4. Recent studies provided important data on TMPRSS4 activity associated with the spreading of influenza viruses, mediated by the cleavage of hemagglutinin. Progression and metastatic potential of several cancers is concordant with an increased expression of TMPRSS4, though being a possible diagnostic marker. However, to benefit from TMPRSS4 as a therapeutic target, more data concerning its physiological relevance are needed, as done by a specific morpholino knockdown in zebrafish embryos.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39262 ◽  
Author(s):  
Thomas A. Prohaska ◽  
Felix C. Wahlmüller ◽  
Margareta Furtmüller ◽  
Margarethe Geiger

2007 ◽  
Vol 80 (3) ◽  
pp. 467-477 ◽  
Author(s):  
Lina Basel-Vanagaite ◽  
Revital Attia ◽  
Akemi Ishida-Yamamoto ◽  
Limor Rainshtein ◽  
Dan Ben Amitai ◽  
...  

2020 ◽  
Vol 73 (12) ◽  
pp. 773-776 ◽  
Author(s):  
Michelle Thunders ◽  
Brett Delahunt

Transmembrane serine protease 2 is encoded by the TMPRSS2 gene. The gene is widely conserved and has two isoforms, both being autocatalytically activated from the inactive zymogen form. A fusion gene between the TMPRSS2 gene and ERG (erythroblast-specific-related gene), an oncogenic transcription factor, is the most common chromosomal aberration detected in prostate cancer, responsible for driving carcinogenesis. The other key role of TMPRSS2 is in priming the viral spike protein which facilitates viral entry essential for viral infectivity. The protease activates a diverse range of viruses. Both SARS-CoV and SARS-CoV-2 (COVID-19) use angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 to facilitate entry to cells, but with SARS-CoV-2 human-to-human transmission is much higher than SARS-CoV. As TMPRSS2 is expressed outside of the lung, and can therefore contribute to extrapulmonary spread of viruses, it warrants further exploration as a potential target for limiting viral spread and infectivity.


2015 ◽  
Vol 470 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Felix Jäckle ◽  
Frederike Schmidt ◽  
Rielana Wichert ◽  
Philipp Arnold ◽  
Johannes Prox ◽  
...  

Metalloprotease meprin β is a sheddase of transmembrane proteins. We identified serine protease matriptase-2 (MT2) as a specific activator of meprin β at the cell surface. This provides mechanistic insight for the regulation of meprin β activity and demonstrates clear differences in proenzyme activation.


FEBS Journal ◽  
2016 ◽  
Vol 284 (10) ◽  
pp. 1421-1436 ◽  
Author(s):  
Lauren M. Tanabe ◽  
Karin List

Sign in / Sign up

Export Citation Format

Share Document