scholarly journals Effect of mechanical and chemical surface treatment on bond strength of acrylic denture teeth to heat cure acrylic resin-an invitro study

2021 ◽  
Vol 7 (3) ◽  
pp. 161-168
Author(s):  
Mrinali Maria Viegas ◽  
Vidya S Bhat ◽  
Sanath Kumar Shetty

Debonding of denture teeth from the denture base has posed a great problem to the clinician and patient. Chemical and mechanical treatments have been performed separately, but there are no studies performed using the combination of chemical and mechanical surface treatments. This study aims at evaluating and comparing the bond strength by using chemical and mechanical surface treatments.60 maxillary right central incisor teeth were used in 5 groups for surface treatment on the ridge lap area: 1 untreated, 2-sandblasting, group 3- Heat cure monomer, 4- sandblasting+ monomer, 5- Dichloromethane. The acrylic teeth were attached to a wax block at an angle of 45º. These were flasked and dewaxed, followed by surface treatment and acrylisation. All cured specimens were loaded under a universal testing machine on the palatal surface at a cross head speed of 1mm/min till fracture occurred. Data obtained was statistically evaluated by one way ANOVA. Surface treatment with dichloromethane showed the highest bond strength of acrylic teeth to heat cure denture base when compared with sandblasting and monomer application. On visual analysis of the fractured specimens, maximum amount of cohesive failures were noticed in the dichloromethane group.Dicholoromethane can be used as an effective and quick method to improve the bonding of acrylic teeth to denture base.

2017 ◽  
Vol 22 (4) ◽  
pp. 47-52 ◽  
Author(s):  
Marina Cumerlato ◽  
Eduardo Martinelli de Lima ◽  
Leandro Berni Osorio ◽  
Eduardo Gonçalves Mota ◽  
Luciane Macedo de Menezes ◽  
...  

ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.


2016 ◽  
Vol 18 (2) ◽  
pp. 109
Author(s):  
M.T. Muñoz MSc ◽  
E. Reales DDS ◽  
L.H.M. Prates DDS, MSc, PhD ◽  
C.A.M. Volpato DDS, MSc, PhD

The aim of this study was to compare the shear bond strength between acrylic resin teeth and autopolymerizing acrylic resin repairs after different surface treatments. Seventy-two upper anterior acrylic resin denture teeth (MFT, Vita, Germany) were selected. Specimens were randomly assigned into six groups (n=12): G1-C, without surface treatment (control); G2-M, methylmetacrylate monomer (Jet, Clássico, Brazil) application; G3-A treatment with methylmetacrylate and metiletilcetone-based bonding agent (Vitacoll, Vita, Germany). The surface of G4-OA, G5-OAM and G6-OAA was airborne-particle abraded with aluminum oxide (Polidental, Wilson, Brazil); being repeated the treatments respectively of groups G1-C, G2-M e G3-A. All groups were then repaired with autopolymerizing acrylic resin (Jet, Clássico, Brazil). Shear bond strength test was performed using an universal testing machine (Instron 4444). Two-way ANOVA and post hoc Tukey’s analysis (p<0,05) were used for statistical comparison. The shear bond strengths of groups G4-OA, G5-OAM and G6-OAA were significantly higher (p<0,05) than that of groups G1-C, G2-M and G3-A. The shear bond strength of Group G3-A were significantly higher (p<0,05) than that of groups G1-C and G2-M. In conclution, chemical treatments in combination with bondig agents showed significant improvements in bond strength without aluminum oxide treatment. More significantly, surface treatment with aluminum oxide particles resulted in the highest bond strength values for acrylic resin teeth repaired with autopolymerizing acrylic resin. 


2017 ◽  
Vol 05 (02) ◽  
pp. 097-103
Author(s):  
Kirandeep Sandhu ◽  
Sanjeev Mittal ◽  
Sabnoor Aujla ◽  
Gurlal Singh ◽  
Simranpal Bindra

AbstractPurpose of this study was to evaluate the effect of sandblasting, monomer treatment and combined effect of sandblasting and monomer treatment of conventional denture base resin on tensile bond strength of heat and auto cure silicone soft liners. Two resilient liners Auto cure (Mollosil) and Heat cure (Molloplast- B) were selected. Fifty six samples with cross sectional area of 25 × 25 mm were prepared and divided into two groups (Group A heat cure and Group B auto cure). Each group was further divided into 4 subgroups (7 samples in each subgroup) dependent upon the surface pretreatment. Subgroup 1 was control group (no surface treatment), subgroup 2 samples were surface treated by sandblasting (250 μm alumina particles), subgroup 3 samples were treated with monomer (for 180seconds), subgroup 4 samples were given combined treatment with sandblasting and monomer. Resilient liners were processed between 2 poly methyl methacrylate surfaces, in the dimensions of 3 mm. Tensile bond strength was determined with Instron Universal testing machine, at a cross head speed of 5mm/min. The data were analyzed using one-way ANOVA, followed by Tukey HSD test (α = 0.05). Monomer and combined treatment significantly increased the tensile bond strength when compared with control. Sandblasting treatment significantly decreased the tensile bond strength when compared with control.


2020 ◽  
Vol 45 (4) ◽  
pp. 426-434
Author(s):  
K Kemarly ◽  
SC Arnason ◽  
A Parke ◽  
W Lien ◽  
KS Vandewalle

Clinical Relevance Mechanical surface roughening of the titanium-abutment base is necessary to increase the pull-off bond strength of the lithium disilicate abutment material. Additional chemical surface treatment may further increase the bond strength, but the effects are product specific. SUMMARY Objective: The titanium-cement interface of a Ti-Base implant crown must be able to resist intraoral pull-off forces. The purpose of this study was to evaluate the effect of mechanical and chemical surface treatments of a titanium-abutment base (Ti-Base, Dentsply/Sirona) on the pull-off bond strength of a lithium disilicate abutment coping. Methods and Materials: Ti-Bases were divided into nine groups of 10 copings each that varied in both mechanical surface treatment (none; Al2O3 air abrasion; CoJet silicoating, 3M ESPE) and chemical treatments (none; Monobond Plus, Ivoclar Vivadent; Alloy Primer, Kuraray). Lithium disilicate abutment copings (IPS e.max CAD, Ivoclar Vivadent) were designed and milled. After crystallization, the copings were cemented onto the Ti-Bases with a resin cement (MultiLink Hybrid-Abutment Cement, Ivoclar Vivadent) according to the manufacturer's recommendations. The copings were torqued to a mounted implant, and the access channel was sealed with composite. After 24-hour storage and 2000 thermal-cycles in distilled water, the copings were subjected to a removal force parallel to the long axis of the interface until fracture. Data were analyzed with multiple one-way analyses of variance and Tukey post hoc tests (α=0.05). Results: Significant differences were found between groups based on type of surface treatment (p&lt;0.05). Conclusions: Chemical surface treatment with Monobond Plus and mechanical surface treatment with CoJet silicoating or Al2O3 air abrasion resulted in the greatest pull-off bond strength. Alloy Primer did not provide a statistically significant increased pull-off bond strength when the surfaces were mechanically treated with Al2O3 air abrasion or CoJet silicoating. The lack of any mechanical surface treatment resulted in the lowest pull-off bond strength regardless of the type of chemical surface treatment.


2016 ◽  
Vol 41 (3) ◽  
pp. 284-292 ◽  
Author(s):  
TP Sato ◽  
LC Anami ◽  
RM Melo ◽  
LF Valandro ◽  
MA Bottino

SUMMARY This study evaluated the effects of surface treatments on the bond strength between the new zirconia-reinforced lithium silicate ceramic (ZLS) and resin cement. VITA Suprinity blocks were crystallized according to the manufacturer's instructions and randomly assigned to six groups (N=36; n=6), according to the surface treatment to be performed and aging conditions: HF20, 10% hydrofluoric acid for 20 seconds, baseline (control); HF20tc, 10% hydrofluoric acid for 20 seconds, aging; HF40, 10% hydrofluoric acid for 40 seconds, baseline; HF40tc, 10% hydrofluoric acid for 40 seconds, aging; CJ, CoJet sandblasting (25 seconds, 2.5 bar, 15-mm distance), baseline; and CJtc, CoJet sandblasting (25 seconds, 2.5 bar, 15-mm distance), aging. All specimens were silanized (Monobond S) and cemented with Panavia F to newly polymerized Z250 resin blocks. After specimens were immersed for 24 hours in distilled water at 37° C, 1-mm2 cross-section microbars were obtained by means of a cutting machine under constant cooling. Baseline groups were immediately tested, whereas “tc” groups were used to analyze the effect of aging on bond strength (10,000 thermal cycles, 5/55°C, 30-second bath). The microtensile bond strength test was performed with a universal testing machine (0.5 mm/min), and bond strength (MPa) was calculated when the load-to-failure (N) was divided by the adhesive area (mm2). We also evaluated the surface roughness (Sa, average roughness; Str, texture aspect ratio; Sdr, developed interfacial area ratio) and the contact angle resulting from the treatments. Data were statistically analyzed by one- or two-way analysis of variance and Tukey's test (all α=5%). The failure mode of each specimen was evaluated by stereomicroscopy, and representative specimens were analyzed by scanning electron microscopy. The microtensile bond strength was affected by the surface conditioning (p&lt;0.0001), storage condition (p&lt;0.0001), and the interaction between them (p=0.0012). The adhesion for HF etching was stable, whereas for CJ, aging significantly damaged the adhesion. Most failures were predominantly adhesive between ceramic and cement (52.6%). The roughness of the treated samples was higher compared with that of polished specimens for the three evaluated parameters (Sa, Str, and Sdr; all p&lt;0.0001). Contact angle was also influenced by treatments (p&lt;0.0001), with the CJ group showing values similar to those of control specimens. It can be concluded that the three surface treatment techniques present favorable immediate results, but silica coating was not effective in maintaining the bond strength over the long term.


Sign in / Sign up

Export Citation Format

Share Document