The Effect of Extension Services and Credit on Agricultural Production in Bolivia, Peru, and Colombia

2021 ◽  
Author(s):  
Mateus C. R. Neves ◽  
Felipe De Figueiredo Silva ◽  
Carlos Otávio Freitas

In this paper we estimate the average treatment effect from access to extension services and credit on agricultural production in selected Andean countries (Bolivia, Peru, and Colombia). More specifically, we want to identify the effect of accessibility, here represented as travel time to the nearest area with 1,500 or more inhabitants per square kilometer or at least 50,000 inhabitants, on the likelihood of accessing extension and credit. To estimate the treatment effect and identify the effect of accessibility on these variables, we use data from the Colombian and Bolivian Agricultural Censuses of 2013 and 2014, respectively; a national agricultural survey from 2017 for Peru; and geographic information on travel time. We find that the average treatment effect for extension is higher compared to that of credit for farms in Bolivia and Peru, and lower for Colombia. The average treatment effects of extension and credit for Peruvian farms are $2,387.45 and $3,583.42 respectively. The average treatment effect for extension and credit are $941.92 and $668.69, respectively, while in Colombia are $1,365.98 and $1,192.51, respectively. We also find that accessibility and the likelihood of accessing these services are nonlinearly related. Results indicate that higher likelihood is associated with lower travel time, especially in the analysis of credit.

2018 ◽  
Vol 115 (49) ◽  
pp. 12441-12446 ◽  
Author(s):  
Alexander Coppock ◽  
Thomas J. Leeper ◽  
Kevin J. Mullinix

The extent to which survey experiments conducted with nonrepresentative convenience samples are generalizable to target populations depends critically on the degree of treatment effect heterogeneity. Recent inquiries have found a strong correspondence between sample average treatment effects estimated in nationally representative experiments and in replication studies conducted with convenience samples. We consider here two possible explanations: low levels of effect heterogeneity or high levels of effect heterogeneity that are unrelated to selection into the convenience sample. We analyze subgroup conditional average treatment effects using 27 original–replication study pairs (encompassing 101,745 individual survey responses) to assess the extent to which subgroup effect estimates generalize. While there are exceptions, the overwhelming pattern that emerges is one of treatment effect homogeneity, providing a partial explanation for strong correspondence across both unconditional and conditional average treatment effect estimates.


Author(s):  
Graham K. Brown ◽  
Thanos Mergoupis

Treatment effects may vary with the observed characteristics of the treated, often with important implications. In the context of experimental data, a growing literature deals with the problem of specifying treatment interaction terms that most effectively capture this variation. Some results of this literature are now implemented in Stata. With nonexperimental (observational) data, and in particular when selection into treatment depends on unmeasured factors, treatment effects can be estimated using Stata's treatreg command. Though not originally designed for this purpose, treatreg can be used to consistently estimate treatment interaction parameters. With interactions, however, adjustments are required to generate predicted values and estimate the average treatment effect. In this article, we introduce commands that perform this adjustment for multiplicative interactions, and we show the required adjustment for more complicated interactions.


2019 ◽  
Vol 52 (2) ◽  
pp. 187-200
Author(s):  
GUBHINDER KUNDHI ◽  
MARCEL VOIA

The estimated average treatment effect in observational studies is biased if the assumptions of ignorability and overlap are not satisfied. To deal with this potential problem when propensity score weights are used in the estimation of the treatment effects, in this paper we propose a bootstrap bias correction estimator for the average treatment effect (ATE) obtained with the inverse propensity score (BBC-IPS) estimator. We show in simulations that the BBC-IPC performs well when we have misspecifications of the propensity score (PS) due to: omitted variables (ignorability property may not be satisfied), overlap (imbalances in distribution between treatment and control groups) and confounding effects between observables and unobservables (endogeneity). Further refinements in bias reductions of the ATE estimates in smaller samples are attained by iterating the BBC-IPS estimator.


2020 ◽  
Vol 8 (1) ◽  
pp. 249-271
Author(s):  
Nathan Corder ◽  
Shu Yang

Abstract The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively, fractional imputation, proposed by Kim 2011, has been implemented to handling missing values in regression context. In this article, we develop fractional imputation methods for estimating the average treatment effects with confounders missing at random. We show that the fractional imputation estimator of the average treatment effect is asymptotically normal, which permits a consistent variance estimate. Via simulation study, we compare fractional imputation’s accuracy and precision with that of multiple imputation.


2020 ◽  
Vol 8 (1) ◽  
pp. 182-208
Author(s):  
Nick Huntington-Klein

AbstractIn Instrumental Variables (IV) estimation, the effect of an instrument on an endogenous variable may vary across the sample. In this case, IV produces a local average treatment effect (LATE), and if monotonicity does not hold, then no effect of interest is identified. In this paper, I calculate the weighted average of treatment effects that is identified under general first-stage effect heterogeneity, which is generally not the average treatment effect among those affected by the instrument. I then describe a simple set of data-driven approaches to modeling variation in the effect of the instrument. These approaches identify a Super-Local Average Treatment Effect (SLATE) that weights treatment effects by the corresponding instrument effect more heavily than LATE. Even when first-stage heterogeneity is poorly modeled, these approaches considerably reduce the impact of small-sample bias compared to standard IV and unbiased weak-instrument IV methods, and can also make results more robust to violations of monotonicity. In application to a published study with a strong instrument, the preferred approach reduces error by about 19% in small (N ≈ 1, 000) subsamples, and by about 13% in larger (N ≈ 33, 000) subsamples.


Sign in / Sign up

Export Citation Format

Share Document