scholarly journals The Investigation of Nonlinear Polynomial Control Systems

2021 ◽  
Vol 28 (3) ◽  
pp. 238-249
Author(s):  
Sergei Nikolaevich Chukanov ◽  
Ilya Stanislavovich Chukanov

The paper considers methods for estimating stability using Lyapunov functions, which are used for nonlinear polynomial control systems. The apparatus of the Gro¨bner basis method is used to assess the stability of a dynamical system. A description of the Gro¨bner basis method is given. To apply the method, the canonical relations of the nonlinear system are approximated by polynomials of the components of the state and control vectors. To calculate the Gro¨bner basis, the Buchberger algorithm is used, which is implemented in symbolic computation programs for solving systems of nonlinear polynomial equations. The use of the Gro¨bner basis for finding solutions of a nonlinear system of polynomial equations is considered, similar to the application of the Gauss method for solving a system of linear equations. The equilibrium states of a nonlinear polynomial system are determined as solutions of a nonlinear system of polynomial equations. An example of determining the equilibrium states of a nonlinear polynomial system using the Gro¨bner basis method is given. An example of finding the critical points of a nonlinear polynomial system using the Gro¨bner basis method and the Wolfram Mathematica application software is given. The Wolfram Mathematica program uses the function of determining the reduced Gro¨bner basis. The application of the Gro¨bner basis method for estimating the attraction domain of a nonlinear dynamic system with respect to the equilibrium point is considered. To determine the scalar potential, the vector field of the dynamic system is decomposed into gradient and vortex components. For the gradient component, the scalar potential and the Lyapunov function in polynomial form are determined by applying the homotopy operator. The use of Gro¨bner bases in the gradient method for finding the Lyapunov function of a nonlinear dynamical system is considered. The coordination of input-output signals of the system based on the construction of Gro¨bner bases is considered.

Author(s):  
Bo Xiao ◽  
Hak-Keung Lam ◽  
Zhixiong Zhong

AbstractThe main challenge of the stability analysis for general polynomial control systems is that non-convex terms exist in the stability conditions, which hinders solving the stability conditions numerically. Most approaches in the literature impose constraints on the Lyapunov function candidates or the non-convex related terms to circumvent this problem. Motivated by this difficulty, in this paper, we confront the non-convex problem directly and present an iterative stability analysis to address the long-standing problem in general polynomial control systems. Different from the existing methods, no constraints are imposed on the polynomial Lyapunov function candidates. Therefore, the limitations on the Lyapunov function candidate and non-convex terms are eliminated from the proposed analysis, which makes the proposed method more general than the state-of-the-art. In the proposed approach, the stability for the general polynomial model is analyzed and the original non-convex stability conditions are developed. To solve the non-convex stability conditions through the sum-of-squares programming, the iterative stability analysis is presented. The feasible solutions are verified by the original non-convex stability conditions to guarantee the asymptotic stability of the general polynomial system. The detailed simulation example is provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed approach is more capable to find feasible solutions for the general polynomial control systems when compared with the existing ones.


2009 ◽  
Vol 47 (5) ◽  
pp. 3608-3623 ◽  
Author(s):  
Daniel J. Bates ◽  
Jonathan D. Hauenstein ◽  
Chris Peterson ◽  
Andrew J. Sommese

Author(s):  
I. Nikitin

Given a bivariate system of polynomial equations with fixed support sets [Formula: see text] it is natural to ask which multiplicities its solutions can have. We prove that there exists a system with a solution of multiplicity [Formula: see text] for all [Formula: see text] in the range [Formula: see text], where [Formula: see text] is the set of all integral vectors that shift B to a subset of [Formula: see text]. As an application, we classify all pairs [Formula: see text] such that the system supported at [Formula: see text] does not have a solution of multiplicity higher than [Formula: see text].


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Matvei Kotov ◽  
Dmitry Panteleev ◽  
Alexander Ushakov

Abstract We investigate security properties of two secret-sharing protocols proposed by Fine, Moldenhauer, and Rosenberger in Sections 4 and 5 of [B. Fine, A. Moldenhauer and G. Rosenberger, Cryptographic protocols based on Nielsen transformations, J. Comput. Comm. 4 2016, 63–107] (Protocols I and II resp.). For both protocols, we consider a one missing share challenge. We show that Protocol I can be reduced to a system of polynomial equations and (for most randomly generated instances) solved by the computer algebra system Singular. Protocol II is approached using the technique of Stallings’ graphs. We show that knowledge of {m-1} shares reduces the space of possible values of a secret to a set of polynomial size.


2013 ◽  
Vol 740 ◽  
pp. 51-55
Author(s):  
Yu Bao Hou ◽  
Shu Yan Tang

Generalized predictive control (GPC) algorithm has been applied to all kinds of industry control systems. But systemic and effective method for nonlinear system has not been found.To this problem,this paper integrates the characteristics of PID technology and GPC,present a PID generalized predicitive control algorithm for a class of nonlinear system,and improves the control quality of the system.


1994 ◽  
Vol 116 (4) ◽  
pp. 1171-1172 ◽  
Author(s):  
Chuen-Sen Lin ◽  
Bao-Ping Jia

The applications of resultants and the Bernshtein formula for the dimensional synthesis of linkage components for finite precision positions are discussed. The closed-form solutions, which are derived from systems of polynomials in multiple unknowns by applying resultant theory, are in forms of polynomial equations of a single unknown. For the case of two compatibility equations, the closed form solution is a sixth degree solution polynomial. For the case of three compatibility equations, the solution is a fifty-fourth degree solution polynomial. For each case, the Bernshtein formula is applied to calculate the number of solutions of the system of polynomial equations. The calculated numbers of solutions match the degrees of the solution polynomials for both cases.


2004 ◽  
Vol 126 (2) ◽  
pp. 262-268 ◽  
Author(s):  
Andrew J. Sommese ◽  
Jan Verschelde ◽  
Charles W. Wampler

For many mechanical systems, including nearly all robotic manipulators, the set of possible configurations that the links may assume can be described by a system of polynomial equations. Thus, solving such systems is central to many problems in analyzing the motion of a mechanism or in designing a mechanism to achieve a desired motion. This paper describes techniques, based on polynomial continuation, for numerically solving such systems. Whereas in the past, these techniques were focused on finding isolated roots, we now address the treatment of systems having higher-dimensional solution sets. Special attention is given to cases of exceptional mechanisms, which have a higher degree of freedom of motion than predicted by their mobility. In fact, such mechanisms often have several disjoint assembly modes, and the degree of freedom of motion is not necessarily the same in each mode. Our algorithms identify all such assembly modes, determine their dimension and degree, and give sample points on each.


Sign in / Sign up

Export Citation Format

Share Document